Read the commentary


For those focused on the need to mitigate the risks of climate change, 2017 ended with a bang. After a decade or more of internal policy development, public stakeholder engagement, and pilot trading systems in seven cities and provinces, China introduced the first phase of its nationwide carbon dioxide emissions trading system (ETS), focusing on emissions from the electric power sector. Simply in terms of its scale, the first phase of China’s nationwide ETS represents a remarkable milestone. Nationwide implementation for the power sector alone will cover roughly 3.5 billion tons of CO2 emissions per year[1]—roughly one-third of Chinese CO2 emissions[2]—a figure that is almost double the size of the next largest ETS by emissions coverage.[3]

China’s ETS is a bold policy departure for the country. Only a decade ago, such an announcement would have seemed implausible. Economic growth and poverty reduction were such fundamental goals in China that they crowded out other objectives, including environmental and climate protection. Only recently has China emphasized the quality of economic growth—including by engaging in rigorous environmental enforcement in order to protect urban air quality.[4]

China’s ETS is also an important milestone for global efforts to mitigate the risks of climate change. Gone are the days of China insisting that the solutions to climate change had to come from the developed world. This about-face from China has the potential to encourage climate action by other nations, including in the developing world, where GHG emissions are growing fastest. For all of these reasons, some observers are hailing the China ETS as game-changing progress.[5]

It may be early for such a conclusion, however. Whether China’s ETS will drive significant emissions reductions remains to be seen. To achieve that outcome, China will need to overcome challenges that have limited the effectiveness of other prominent ETSs in their early years of implementation.

In this essay, we examine the emerging details of the new Chinese ETS in relation to the system designs and course corrections of four GHG emissions trading programs: the European Union’s Emissions Trading System (EU-ETS), California’s cap-and-trade system, the nine-state Regional Greenhouse Gas Initiative in the northeastern United States, and the Republic of Korea’s Emissions Trading Scheme (KETS).

We focus on three key questions that will determine whether China’s ETS is likely to drive significant reductions in China’s GHG emissions that would not have otherwise occurred: (1) What emissions sources are covered by the policy? (2) Are targets stringent? and (3) What systems are in place to verify that emissions reductions are real?

Then, we describe a pair of additional issues that will have important implications on both the economic and environmental effectiveness of the Chinese ETS: (1) whether revenue is generated, and how it is used; and (2) if the carbon price signal can be passed on to consumers.

In each case, we bring in examples from the experiences of the world’s four largest ETSs outside China, including ways they have been successful and ways they have not.

Strengthening the Existing Emissions Trading Schemes

The first greenhouse gas emissions trading systems were implemented just over a decade ago, making each of the early ETSs somewhat of an experimental undertaking. Policymakers had to design new and unique markets for GHG emissions that would encourage emissions reductions without severe impacts on the producers or consumers of fossil fuels. This has largely been uncharted territory.

Not surprisingly, the early ETSs have encountered bumps in the road. Policy makers have struggled to implement programs that follow through on promises to significantly drive down emissions compared to business-as-usual trajectories. But decision makers in each jurisdiction have learned with time, from the experience of their own ETS and from others. The world’s four largest ETSs outside of China are all in the process of implementing changes that are intended to increase efficiency or ambition:

  • The EU-ETS has been in operation since 2005, covering just under half of the GHG emissions in 31 countries. After years of chronically low prices of emissions permits, the EU is reviewing a proposal to revise the EU-ETS for the years after 2020. If approved, the changes will include a steeper decline in emissions limits that will enable covered entities to reduce their emissions by over 40 percent below 2005 levels by 2030, a new market stability reserve that will address the surplus of emissions permits that have built up in the ETS, and the creation of new funds that will use ETS revenues to promote innovation and modernization in covered industries.
  • California’s ETS has gradually expanded in scope since its implementation in 2013, and it now covers about 85 percent of the state’s emissions. In July 2017, California passed new legislation that extends the cap-and-trade program and significantly lowers the cap on emissions levels to enable the state to achieve emissions reductions by 2030 of 40 percent below 1990 levels.
  • The Regional Greenhouse Gas Initiative (RGGI, pronounced as “Reggie”) has covered electricity generators in nine northeastern US states since 2009. Like the EU and California programs, permit prices have been lower than anticipated, and RGGI is implementing significant changes to strengthen the program’s ambition. In August 2017, the participating states proposed a new plan with various changes intended to spur additional emissions reductions, including emissions cap levels declining so that covered entities achieve emissions reductions in 2030 of 30 percent below 2020 levels. In addition, following the election of new governors in both New Jersey and Virginia, both states are likely to join the program in 2018.
  • Last, the Republic of Korea’s ETS, which covers about two-thirds of the country’s GHG emissions, just completed the first phase of its program, which began in 2015. At the end of 2017, the Korean cabinet allocated initial allowances for 2018, and it is now determining the emissions caps through 2020, the year Korea has pledged to achieve a 37 percent reduction in GHG emissions below business-as-usual levels.[6] The changes to the Korea ETS will include a gradual move away from the free allocation of all emissions permits.

The impact of these changes remains to be seen. But the ETSs appear to be building on the experiences they have accumulated with the goal of producing more efficient, effective, and long-lasting programs.

Chinese policy makers have had the benefit of learning about the existing ETSs through a number of official exchanges and workshops with other governments as well as informal consultations with scholars and policy experts. These lessons learned, along with the deliberate process China is using to gradually implement its nationwide program, provide China with the opportunity to leapfrog the problems of the early ETSs if Chinese policy makers so desire. Nevertheless, the same factors that limited the success of other ETSs could limit the China policy as well.

Three Key Questions That Will Determine the Emissions Reductions from China’s ETS

  1. What emissions sources are covered by the policy?

The scope of an ETS is determined by the breadth of emissions sources obligated to obtain permits/allowances to emit CO2. An ETS with a broad scope covers most emissions sources in the economy, whereas an ETS with a narrow scope may cover just one sector. No ETS is truly “economy-wide” because a small portion of emissions sources will have characteristics that make them impractical to cover under the policy.

An ETS with a broader scope will achieve greater emissions reductions for the same reason that casting a wider net will catch more fish. If, for example, the price of emissions permits is $20 per ton of CO2, the policy will encourage all emissions reduction opportunities that can be achieved for less than $20 per ton. Of course, there are more of these opportunities across the entire economy than in any single sector. A broader scope also adds some administrative complexity because a greater number and variety of emissions sources are covered by the policy.

Another advantage of an ETS with a (near) economy-wide scope is that the recipe for achieving a national emission target becomes relatively simple, at least in theory: set the emission cap to correspond to the desired emissions level in a given year and voilà, target achieved. In contrast, a narrow ETS can only be a small part of a strategy to achieve an economy-wide emissions goal because the emissions that are outside the scope of the policy could increase. This recipe also becomes more complicated if the ETS does not place an actual cap on emissions, as we discuss in the context of the China program below.

The problems with a narrow program scope are illustrated by the experience of New York, the largest US state in the RGGI cap-and-trade program. New York has pledged to reduce total GHG emissions by 80 percent by 2050.[7] But RGGI covers only power sector emissions, or roughly a quarter of total emissions across these economies. Between 2012 and 2015, power sector emissions fell by nearly 10 percent in New York, but the state’s overall CO2 emissions from energy increased by 4 percent over the same period due to rising emissions from heating and transportation.[8]

In contrast, California’s ETS covers about 85 percent of total GHG emissions,[9] and according to the state’s Air Resources Board’s Scoping Plan, declining annual emissions caps will be used to ensure that California achieves its 2030 target.[10] Because the cap is near economy-wide, California’s ETS is a credible tool to help ensure an overall emissions targets is achieved.

China’s nationwide ETS is intended ultimately to cover most of the country’s CO2 emissions, but the scope of the policy has been a moving target over the last several years. The country’s city- and provincial-level ETS pilots, which were implemented starting in 2013 and 2014, covered different parts of the economy in the various jurisdictions.[11] When President Xi Jinping first declared the intention to establish a national scheme in September 2015,[12] he said that China would start a national emissions trading system in 2017 that covers sectors including power generation, iron and steel, chemicals, building materials, papermaking, and nonferrous metals.[13]

In the period between that announcement and December 2017, Chinese decision makers evidently changed their minds, electing instead to start with electric power generation only. The initial phase will cover roughly 1,700 facilities rather than the roughly 7,000 facilities that could be covered if the trading system were expanded to cover all of the sectors in the original plan.[14] This means that the initial phase will cover roughly one-third of China’s total CO2 emissions from fossil fuels. While the scope is considerably narrower than originally planned, from a global perspective, it remains massive, covering roughly 10 percent of global CO2 emissions from fossil fuels.[15]

Starting with a narrow scope and broadening it over time is an understandable approach, as it facilitates a smooth transition for regulators as well as greater predictability for decision makers in industry. It is of course preferable to launching a program before the administrative mechanisms are ready. Both the EU and California likewise started narrowly and expanded their scope. The downside is also evident, however: a narrow scope will significantly reduce the emissions impact of the China policy in the near term. As long as the ETS covers only the power sector, similar to the RGGI states, it will not be capable of ensuring economy-wide emissions reductions.

  1. Are the targets stringent? That is, will the ETS achieve an emissions trajectory that is significantly lower than what would be achieved without the policy?

The emissions reductions caused by an ETS depend on its targets. Achieving significant emissions reductions generally requires policymakers to take the following three steps:

  • Forecast future emissions volumes or emissions rates in the absence of the ETS (a “baseline” or “business as usual” forecast).
  • Set emissions (or emissions rate) limits at levels that are significantly below the baseline forecast.
  • Issue or auction emissions permits that correspond to these limits.

However, early ETSs have had relatively weak targets, for reasons that include bad timing, bad incentives, and bad forecasts. In what follows, we describe each of these problems and how they can be overcome, and then we explain the specific challenges that China faces in avoiding the same problems of the early ETSs.

The first ETSs were designed and implemented in the early 2000s. At least two unforeseen and important events followed: (1) the Great Recession hit in 2008, leading to much slower-than-expected economic growth; and (2) a boom occurred in natural gas production, leading to far lower natural gas prices in some regions. Both of these events caused emissions to be lower than anticipated when the ETSs were designed. For instance, emissions covered by the RGGI program were about 125 million tons in 2009, but the 2009 emissions cap was set at over 180 million tons.[16] An ETS with an emissions cap far above actual emissions levels is like a diet with a daily limit of 10 pieces of cake: an irrelevant push in the right theoretical direction.[17]

An ETS can be designed to drive significant emissions reductions even when unforeseen events cause emissions targets to be weak. When actual emissions are near or below emissions cap levels, the price of emissions permits collapses due to reduced demand. Putting in place a “price floor” on emissions permits (a minimum price below which the permit price is not allowed to fall) prevents this price collapse. When permit prices hit the floor, the fixed carbon price drives emissions reductions as opposed to the emissions cap; in effect, the ETS has been converted into a carbon tax with the tax rate at the level of the price floor.

Indeed, given the oversupply of permits and persistently low permit prices in the EU-ETS, the United Kingdom has implemented a price floor on emissions from electricity generation that has caused a precipitous shift away from carbon-intensive coal-fired electricity generation since 2013.[18] The California and RGGI programs have price floors as well, and the price of permits has commonly been at the price floor in both programs. California and RGGI are gradually increasing the levels of their price floors as part of the program extensions to 2030. In addition to price floors, some RGGI states are taking a second step to address weak targets, called an “emissions containment reserve,” in which permits are withheld (essentially lowering the cap) when permits prices fall below specified thresholds.[19]

Bad timing is not the only cause of weak emissions targets. The incentives for policy makers to implement weak climate change policies have also played an important role. Governments are pressured by regulated industries to design programs with higher emissions limits and/or to issue additional permits once the program is underway. And government decision makers do not want to be seen as putting restrictions on domestic industries that could constrain short-term economic growth. Because climate change is a global and intergenerational problem, avoiding the harmful impact of an increase in national GHG emissions will rarely be as politically attractive as short-term relief from compliance costs.

In initial years of the EU-ETS, individual countries were able to set their own caps and issue free permits as they saw fit, using processes that were not always transparent to outside stakeholders. Such rules gave each country little incentive not to cave to pressure to “overallocate” free emissions permits.[20] More recently, in 2016, the Korean government made various changes to its 2016 emissions cap when permit prices were higher than expected, including issuing additional permits and enabling regulated entities to borrow additional permits from future years’ allocations.[21]

Such incentive problems can be assuaged or avoided by aligning the ETS emissions caps with transparent long-run emissions targets. Korea’s caps are not directly tied to 2020 or 2030 national emissions targets. In fact, at the time the adjustments were made to the cap in 2016, caps for the program had only been specified through 2017, and the program only covers about two-thirds of Korea’s emissions. Consequently, weakening the cap had an upside for Korean policy makers (relief for regulated entities) but little downside in terms of a missed target. In contrast, as noted above, California’s near-economy-wide ETS is aligned with state legislation that mandates 40 percent emissions reductions by 2030. If the California government were to issue additional permits that put this target in jeopardy, stakeholders would surely notice, and policymakers would suffer political repercussions.

Bad or outdated forecasts are a third cause of weak ETS emissions caps. Forecasting the future of the energy system is rife with uncertainty, but policy makers who wish to understand the stringency of an ETS (and thus the costs and benefits of the policy) must make forecasts of where emissions are headed in the absence of the policy. If these projections systematically over- or underestimate future emissions, they will give policy makers a misleading impression about the likely stringency of emissions caps. Indeed, in recent years, the most commonly used energy sector forecasts have consistently underestimated the progress of low-carbon technologies in the power sector, leading to overestimates of future emissions.[22] This has led some jurisdictions to design ETSs with weak emissions caps.

For example, in the United States, the Obama administration’s Clean Power Plan (CPP) established limits for power plant emissions in each US state and encouraged states to implement ETSs to achieve the targets. According to the US government analysis released alongside the CPP, the ETSs were expected to cause significant emissions reductions in virtually every state.[23] However, this analysis relied on forecasts for solar energy, wind energy, and energy efficiency that were far more conservative than expert forecasts for each individual technology,[24] thus making the CPP appear more stringent (or onerous, from the perspective of some interest groups) than it was likely to be. Independent studies showed that CPP emissions limits were relatively weak, with many states on pace to achieve their emissions targets even without the regulation.[25]

While the Clean Power Plan will not be implemented (as designed by the Obama administration), some states are moving forward with power sector ETSs, and these state programs may be subject to the same concerns of weak emissions caps. Virginia, which plans to join RGGI, released an ETS plan in November 2017 that proposes setting emissions targets that start at either 33 or 34 million tons in 2020 and decline by 3 percent annually. Analysis by the Rhodium Group shows that in the absence of the ETS, Virginia’s emissions are likely to be lower than these cap levels during the 2020 to 2030 period.[26] Unless these caps are adjusted, they may not drive emissions reductions in the state.[27]

The stringency of China’s ETS remains to be seen because China has not yet published the targets for its ETS. But there are reasons to expect that China’s approach may also be susceptible to—or perhaps intended to create—weak emissions targets.

The first warning sign about the stringency of the Chinese ETS, perhaps counterintuitively, relates to the progress China is already making in improving local air quality and slowing GHG emissions growth. Until recently, China was on pace for rapid emissions growth of both conventional pollutants and GHGs for the foreseeable future—indeed, emissions more than doubled between 2000 and 2010 alone. But much has changed in recent years. As part of China’s transition to a new growth model, its economy has slowed and begun to shift away from energy-intensive industries like construction and manufacturing, which in turn has slowed emissions growth. China has also implemented aggressive policies both to restrict the use of coal and to support the emergence of clean energy technologies. For example, the 13th Five Year Plan (2016–20) included a ban on new coal power plants until 2018. Consequently, while China expects continued growth in energy demand and GHG emissions over the next decade, its coal use and its emissions trajectory appear to be approaching a plateau. (Some projections suggest emissions will peak before 2030 under current policies.)[28] Aligning China’s ETS targets with its national objective to peak emissions by 2030[29] may therefore be a recipe for a weak ETS that will not drive down emissions below levels that are likely to be achieved anyway. Of course, China can change its national targets and/or align its ETS with more stringent goals.

The second concern is that unlike the other trading systems covered in this essay, China is not proposing an ETS with volumetric emissions limits (or “mass-based caps”). Instead, China has proposed using “rate-based” emissions caps, which means that the performance of covered facilities will be assessed on the basis of how their emissions relative to their own output (or “emissions rate”) compare to the emission rate benchmark set for their category of facilities. In the power sector, these benchmarks are likely to be set in terms of emissions per megawatt hour. It is expected (though as of this writing, not entirely clear) that emissions rate targets will differ for different facility categories (e.g., different classes and sizes of coal plants).[30]

Rate-based targets can be stringent if they are set well below baseline emissions rate levels. However, rate-based approaches are less efficient than mass-based approaches at reducing emissions by a given level.[31] The advantage of rate-based systems is they can lead to improved emissions rates with limited price impacts, while also enabling the continued growth of output and emissions when economic conditions warrant. From the perspective of economic decision makers in China, this translates into a strong selling point; it avoids overly abrupt impacts on producers and consumers in the power system. From the perspective of environmental advocates, the flexibility of rate-based trading is a potential liability because emissions can grow rather than shrink.[32]

Finally, a third concern relates to the complexity of China’s program. Compared to a mass-based program with a single emissions cap, under a rate-based program with different emissions rate limits for a long list of facility categories, it will be more difficult for decision makers—and even more so outsiders—to assess the stringency and effectiveness of China’s program targets. Like the EU and Korea examples described earlier, this complexity may create a political environment in which regulators do not have the incentive to design and retain a stringent policy. A market for permits with a clear price signal can be one solution, because price levels should be an indication of the stringency of the emissions rate limits.

None of these considerations implies that China’s ETS is fated to fail in driving significant emissions reductions. Chinese policy makers can use the lessons from the early ETSs to help design a policy with stringent targets if they so desire. For the time being, it appears that the Chinese policy designers have chosen to prioritize caution, flexibility, and broad signaling about the direction of emission intensity.

  1. What systems are in place to verify that emissions reductions are “real”?

The integrity of the ETS depends on strong rules ensuring that regulated entities cannot avoid submitting emissions permits unless the required emissions reductions have been achieved. Regulated entities often have two options to avoid submitting emissions permits for compliance. First, they can take actions that reduce or eliminate their own emissions. Second, if allowed by the ETS, regulated entities can pay for emissions reductions from a source that is not subject to the ETS, for which they receive an “offset” certificate. If the offset costs less than the ETS permits, regulated entities can save money by using offsets for compliance.

Rigorous monitoring is needed to ensure that a permit is surrendered for all emissions subject to the ETS. Otherwise, regulated entities may be able to falsely claim lower emissions levels or fail to surrender permits. Fortunately, to the credit of early ETSs, there has been little evidence of such problems. Programs typically require reported emissions levels to be verified by an accredited independent party, and they include monetary penalties (typically many multiples of the emissions permit price) for the failure to surrender permits when required.[33] Perhaps also contributing to these successes is that regulated entities are commonly given experience monitoring and verifying emissions before the ETS is launched, such as the GHG and Energy Target Management System in Korea, which has been in place since the 1990s.[34]

Ensuring the integrity of emissions reductions from offsets has been more problematic. Because these emissions reductions take place outside the scope of the program, and sometimes also outside the legal jurisdiction that governs the ETS, the regulators enforcing the ETS may have less of an ability to verify that emissions reductions have taken place. In addition, offsets commonly involve actions that are inherently more difficult to monitor than fossil fuel GHG emissions, such as emissions reductions due to land use change. Indeed, this difficulty is often why they are excluded from the ETS in the first place.

Finally, if the action that created the offset would have happened in the absence of the ETS, then the ETS will not have created any additional emissions reductions. Indeed, a large portion of “emissions reductions” in the early years of the EU-ETS were from offsets produced from the destruction of a GHG called HFC-23, a common by-product of industrial manufacturing processes in developing countries. Close scrutiny of the finances of these HFC-23 projects suggested that many were creating HFC-23 for the primary purpose of destroying it and earning money from the offset market; thus, these offsets were not creating real emissions reductions.[35]

Because of these difficulties and the widespread perception that emissions reductions from offsets are less reliable than those from regulated entities, the early ETSs have all placed limits on the use of offsets for compliance.

Ensuring reliable emissions reductions may prove especially challenging for the new Chinese ETS. To begin with, the Chinese energy sector does not have systems in place to ensure the same widely available, timely, and accurate data and statistics that early ETS nations have benefited from.[36] This could make it easier for regulated entities to report inaccurate emissions performance and more difficult for regulators to enforce the ETS rules.

China can overcome these challenges. Indeed, China has demonstrated time and again its ability to build systems—both physical and institutional—that respond to what China’s leaders determine to be the major challenges of the day. And China is gradually investing in energy data systems through its National Bureau of Statistics (NBS), National Energy Administration (NEA), and National Development and Reform Commission (NDRC). Moreover, foreign partners such as the US Department of Energy (DOE) and the International Energy Agency (IEA), among others, have devoted significant priority and made available significant resources to facilitate China’s progress in this arena.[37] The success of these efforts will significantly influence the degree to which the new Chinese ETS can drive reliable emissions reductions.

Of course, the rules of the Chinese ETS will influence the reliability of emissions reductions as well. China can benefit from the examples set by other ETSs with strong rules related to monitoring, reporting, and verification of emissions reductions. And China can avoid the problems of early ETSs related to offsets by putting in place rigorous regulations that ensure emissions reductions from offsets are real, if offsets are allowed at all.

Given the deliberate pace of the phasing in of China’s ETS, there will be ample time for China to put in place strong rules and data systems that ensure reliable emissions reductions. Even the introduction of the ETS in the power sector alone will occur over a three-year period. The first phase, which is to run for roughly one year from December 2017, will focus on “infrastructure construction”—the establishment of the monitoring, reporting, and verification (MRV) system, the registration system for allowances, and the trading platform. The second year will focus on “system testing”—a time to test out the allocation, trading, registry, and compliance systems. The third phase—“development and improvement”—involves the full implementation of the ETS in the power sector, with an expansion to other sectors in the years after that.[38] This slow pace of development and deployment will limit what the Chinese ETS will achieve in the near term but will also make it easier for Chinese regulators to develop a strong and lasting program.

Two additional questions will help determine whether China’s emissions reductions are achieved cost-effectively:

China’s ETS will drive significant emissions reductions if it successfully navigates the three issues described earlier—a broad scope, stringent caps, and strong rules to ensure emissions reductions are real. But other factors are important as well, both in determining the emissions and economic impacts of an ETS. A comprehensive list is outside the scope of this essay, but we mention two examples here: (1) whether revenue is generated from the distribution of allowances, and how any revenue is used; and (2) whether the carbon price signal can be passed on to consumers.

Revenue generation and productive use.

An ETS can either auction emissions permits or allocate permits to regulated entities for free. There are various reasons to design an ETS with a portion of permits allocated for free, particularly in the early years of the program, including to protect domestic industry, to ease the transition to the new policy regime, and to gain political support for the policy. But economists widely agree that to maximize the cost-effectiveness of the policy, an ETS should eventually auction the bulk of the emissions permits and use the resulting auction revenue in productive ways. After all, allocating permits for free is equivalent to transferring assets to entities responsible for emissions.[39] By turning those assets into government revenue, they can be used in ways that are likely to be more beneficial to the economy, such as funding investments in public goods, reducing taxes, or protecting vulnerable households from increasing prices.

Revenues from permit auctions can also be used to invest in low-carbon technologies and strategies, such as funding clean energy sources. Indeed, the California, EU-ETS, and RGGI programs use at least a portion of auction revenues to invest in activities intended to achieve additional emissions reductions. The Korea ETS, on the other hand, freely allocated 100 percent of permits between 2015 and 2017 and plans to freely allocate 97 percent of permits in the second phase of the program that begins this year.

It is unclear whether any emissions permits will be auctioned in China’s ETS or how such revenue would be used. Some commentators suggest that permits will be given away for free, at least in the initial operations of the new ETS,[40] while others say that this has not yet been decided.[41] Two of the seven city- or province-based ETS pilots did employ auctions to distribute a share of their allowances: Hubei auctioned less than 30 percent of the allowances, and Guangdong auctioned only 3 percent.[42]

China’s ETS can yield large and low-cost emissions reductions regardless of how permits are allocated, but auctioning permits and using the revenues in productive ways can yield significant additional economic and environmental benefits for the Chinese people.

Enabling a strong carbon price signal.

An ETS creates a carbon price that increases the costs of actions that cause GHG emissions, which leads to fewer of these actions, thus reducing emissions. The ETS is most cost-effective when both producers and consumers can observe a strong carbon price signal so that each has the incentive to seek out less GHG-intensive goods and services. If, instead, the price signal is muted, the carbon price will not encourage emissions reductions wherever and however they can be achieved at the lowest cost.

Muted price signals can occur due to the structure of the economy. If energy prices for some consumers are fixed, for example, then these consumers will not see any price changes due to the ETS and will have no incentive to conserve or use energy more efficiently, even if these actions are among the cheapest ways to reduce emissions. When emissions permit prices are at the price floor (in which case the caps are not ensuring a certain emissions level), then the muted price signal would lead to lower emissions reductions caused by the ETS.

Another cause of muted price signals is overlapping regulations. If the jurisdiction implementing the ETS is also implementing other policies that mandate specific low-carbon actions, this hinders the ETS from encouraging the lowest cost emissions reduction opportunities. California, for example, has stringent emissions caps when compared to a “no climate policy” baseline, but the price signal from the ETS remains relatively weak due to other policies that address GHG emissions directly or indirectly, such as fuel efficiency standards, a low-carbon fuel standard, a renewable portfolio standard, and energy efficiency policies. California estimates that between 2020 and 2030, the ETS will be responsible for under 40 percent of emissions reductions achieved in the state, whereas other policies will be the cause of over 60 percent of emissions reductions.[43] The European Union and RGGI states have important overlapping policies as well. An overlapping policy is not necessarily duplicative; other measures often have separate policy rationales, such as promoting innovation, reducing air pollution, or increasing energy security. Politics are an important rationale as well; the costs associated with regulations such as renewable portfolio or fuel economy standards are typically less visible to consumers compared to those from a carbon price.

Whether China’s ETS produces a sufficiently strong price signal that induces behavioral changes among producers and consumers remains to be seen. As discussed, China has various other clean energy policies, many of which were outlined in the country’s Paris climate pledge. These could mute price signals if emissions targets are not set to be stringent.

Perhaps even more important to the eventual price signal is the nature of energy pricing in China. The Chinese economy is fundamentally not market based.[44] Many energy prices are set administratively rather than by economic fundamentals; therefore, it is more difficult for increased or decreased compliance costs (for example, for inefficiently or efficiently operated power plants) to be passed along to the consumer.[45] In the power sector, input price changes do not automatically get reflected in the cost of electricity that is delivered to consumers. Instead, pricing can be affected by administrative decisions, dispatch protocols, and behind-the-scenes power of state-owned enterprises.


China’s announcement of its national ETS has captured the attention of the international community focused on mitigating climate change risk, and for good reasons. China’s rollout of the initial elements of its nationwide carbon emissions trading system is an important milestone—both because of the massive scale of emissions that will be covered by the program and because China is a developing country whose actions will influence the climate policies throughout the world. Moreover, the country’s leaders have introduced the ETS in a careful, stepwise manner, after studying existing emissions trading models and analyzing options deeply.

Despite all of these laudable considerations, we simply do not yet know whether the Chinese ETS will exert significant influence on China’s future GHG emissions, and there are reasons to have modest expectations. Early ETSs have had limited success implementing policies with stringent emissions limits that drive real emissions reductions. And early indications, like the narrow scope and the lack of emissions limits, suggest that Chinese policy makers are not prioritizing large emissions reductions from the ETS in the near future. The benefits to the global climate arising from China’s new ETS may thus be less significant than many would hope. Only time will tell.

[1] Robert Stavins, “What Should We Make of China’s Announcement of a National CO2 Trading System?,” An Economic View of the Environment (blog), January 7, 2018,

[2] “CAIT Climate Data Explorer: China,” World Resources Institute,

[3] The EU-ETS covers just under two billion tons of CO2-equivalent emissions. See Easwaran Narassimhan, Kelly S. Gallagher, Stefan Koester, and Julio Rivera Alejo, Carbon Pricing in Practice: A Review of the Evidence (Medford, MA: Climate Policy Lab, 2017), 10,

[4] Gabriel Wildau, “China’s Pollution Curbs Hit Growth as Policy Priorities Shift,” Financial Times, December 17, 2017, m/content/1b245c3e-e08e-11e7-a8a4-0a1e63a52f9c. Also see Gabriel Wildau, “China Backs Away from Long-Term GDP Targets,” Financial Times, October 26, 2017,

[5] See, for example, Paula DiPerna, “The Game Changes: China Officially Announces National Power Sector Cap-and-Trade,” CDP, January 11, 2018,, and Michael Holder, “China’s ‘Monumental’ New Emissions Trading Scheme,” GreenBiz, December 21, 2017,

[6] “South Korea,” Climate Action Tracker, November 6, 2017,

[7] “Governor Cuomo, Joined by Vice President Gore, Announces New Actions to Reduce Greenhouse Gas Emissions and Lead Nation on Climate Change,” October 8, 2015,

[8] “State Carbon Dioxide Emissions Data,” US Energy Information Administration,

[9] See program summary on C2ES website:

[10] California Air Resources Board, California’s 2017 Climate Change Scoping Plan, November 2017,

[11] Mengya Zhang, Yong Liu, and Yunpeng Su, “Comparison of Carbon Emission Trading Schemes in the European Union and China,” Climate 5, no. 3 (September 2017): 70. doi:10.3390/cli5030070.

[12] This statement was made during a state visit to Washington, DC, as part of US-Chinese efforts to provide leadership in advance of the 21st Conference of Parties to the UN Framework Convention on Climate Change in Paris (December 2015).

[13] “U.S.-China Joint Presidential Statement on Climate Change,” September 25, 2015,

[14] Matt Carr and Feifei Shen, “China Is Creating a Massive Carbon Market to Fight Climate Change,” Bloomberg, December 19, 2017,

[15] Figures derived from Zeke Hausfather, “Analysis: Global CO2 Emissions Set to Rise 2% in 2017 after Three-Year ‘Plateau,’” November 13, 2017,, and Stavins, “What Should We Make of China’s Announcement of a National CO2 Trading System?”

[16] Lara Dahan et al., Regional Greenhouse Gas Initiative (RGGI): An Emissions Trading Case Study, IETA, April 2015,

[17] For economic downturns like the Great Recession, the fact that ETS drives fewer emissions reductions can be seen as a feature rather than a bug of the ETS—regulated entities benefit from compliance costs when they can least afford to pay them. Economic downturns are just one of many potential causes of lower-than-expected emissions.

[18] David Hirst, Carbon Price Floor (CPF) and the Price Support Mechanism, House of Commons Library Briefing Paper no. 05927, January 8, 2018, 20.

[19] Dallas Burtraw and Bill Shobe, “Preview of Analysis of an Emissions Containment Reserve,” June 14, 2017, The RGGI emissions containment reserve performs a similar function to that of the EU-ETS’s proposed new “market stability reserve.”

[20] European Commission, EU ETS Handbook (Brussels: European Commission, 2015), 43,

[21] International Carbon Action Partnership, “Korea Emissions Trading Scheme,” February 2018,

[22] David Roberts, “Energy Forecasters Consistently Underestimate Wind and Solar: A Critic Explains Why That’s a Problem,” March 25, 2016,

[23] “Clean Power Plan for Existing Power Plants: Regulatory Actions,” US Environmental Protection Agency,

[24] Noah Kaufman and Eleanor Krause, “The Economic Impacts of the Clean Power Plan: How Studies of the Same Regulation Can Produce Such Different Results,” World Resources Institute, January 2017,

[25] John Larsen and Whitney Herndon, “What the CPP Would Have Done,” Rhodium Group, October 9, 2017,

[26] John Larsen and Whitney Herndon, “RGGI Expansion: The Road Ahead,” Rhodium Group, January 3, 2018,

[27] Note that the Virginia’s proposed ETS does include a price floor and an emissions containment reserve, which could both reduce emissions in the event of a weak cap.

[28] This paragraph draws from information and sources from the Climate Action Tracker website:

[29] China’s nationally determined contribution under the Paris climate agreement calls for nonfossil energy sources to grow to at least 20 percent of total primary energy supply by 2030, for the carbon intensity of the Chinese economy to improve by 60 to 65 percent by 2030 from a baseline of 2005, and for the country’s CO2 emissions to peak not later than 2030 and sooner if possible.

[30] Lawrence Goulder and Richard Morgenstern, “China’s Rate-Based Approach to Reducing CO2 Emissions: Strengths, Limitations, and Alternatives,” December 15, 2017,; William Pizer and Xiliang Zhang, “China’s New National Carbon Market,” December 31, 2017,

[31] Carolyn Fischer, Rebating Environmental Policy Revenues: Output-Based Allocations and Tradable Performance Standards, RFF Discussion Paper no. 01-22. (Washington, DC: Resources for the Future, 2001).

[32] This potential problem may be exacerbated by having various categories of facilities within the power sector with different targets. For example, hypothetically, if the rules of the Chinese ETS did not require comparatively aggressive emissions rate reductions from high-emitting technologies such as subcritical and even supercritical coal-fired power plants and if more such plants were built on the basis of comparative cost effectiveness, one could see absolute emissions grow rather than shrink.

[33] See, for example, program summaries of the International Carbon Action Partnership at

[34] Stefan Niederhafner, “The Korean Energy and GHG Target Management System: An Alternative to Kyoto-Protocol Emissions Trading Systems?,” TEMEP Discussion Paper no. 2014:118, October 1, 2014,

[35] Michael Wara and David G. Victor, “A Realistic Policy on International Carbon Offsets,” Program on Energy and Sustainable Development Working Paper no. 74, April 1, 2008,

[36] There are statistical yearbooks and energy data sets that one can receive in certain publications, such as the China Statistical Yearbook, in which chapter 9 covers energy ( Nonetheless, the existing offerings do not reach the levels of timeliness, accuracy, and availability that one customarily requires to inform a smooth-functioning market. For an example of the data requirements under RGGI, see For similar information under the EU-ETS, see

[37] One of the authors (Elkind) worked previously to support collaborations on this topic both during his tenure at DOE and through his tenure as a vice chair of the IEA’s governing board.

[38] Pizer and Zhang, “China’s New National Carbon Market.”

[39] Even worse, in the early years of the EU-ETS, power generators were granted emissions for free but then still passed on the costs to consumers, earning windfall profits in the process. See European Commission, EU ETS Handbook, 43.

[40] See, for example, Nectar Gan, “Will China’s Carbon Trading Scheme Work without an Emission Cap?,” South China Morning Post, January 3, 2018,

[41] See, for example, Stavins, “What Should We Make of China’s Announcement of a National CO2 Trading System?”

[42] Zhang, Liu, and Su, “Comparison of Carbon Emission Trading Schemes in the European Union and China.”

[43] California Air Resources Board, California’s 2017 Climate Change Scoping Plan.

[44] We do not mean to be facile with this argument. In many countries, including those whose economies are based on free-market principles, the energy industry and especially the power sector blend together market, regulatory, and administrative instruments.

[45] Goulder and Morgenstern, “China’s Rate-Based Approach to Reducing CO2 Emissions.”







2017年的末尾对于那些关注缓和气候变化风险的人们来说注入了一针强心剂。在经过十多年的内部政策制定、公共利益相关者参与、以及7个省市的示范交易系统,中国引入了第一阶段国家范围内着重电力行业的碳排放交易系统 (ETS)。就其规模而言,中国ETS第一阶段代表了一个重要的里程碑。仅在全国范围内实施电力行业的碳排放交易年就能覆盖约35亿吨二氧化碳排放量[1],约占中国二氧化碳排放量的三分之一[2],相当于第二大ETS排放量的两倍。[3]


对于国策制定,ETS对中国来说是大胆的一步。仅仅十年之前,类似的声明大概会让人难以置信。促进经济增长和减少贫困是中国的基础目标。中国对这两个目标强调之重使其他有关环境和气候目标易被疏忽。仅仅在最近几年,中国才开始着重经济发展的质量 ——包括通过严格的环境执法来保护城市的空气质量。[4]


尽管如此,现在下任何定论未免有些为时过早 。中国的ETS是否会大幅度减少碳排放量还有待观察。中国会像其他国家一样,在实施ETS初期遇到一些影响其效果的问题和挑战。中国需要克服这些挑战已达到减排预期。


我们将主要关注三个决定中国ETS能否大幅减排的关键问题上:(1)这项政策涵盖了哪些排放源? (2) 目标是否严格? (3) 现有什么系统来核实减排是否落实?






  • 欧盟排放交易系统自2005年就开始运行,其中包含了31个国家略低于一半的温室气体排放量。在排放许可价格多年持续低靡后,欧盟正在审阅一项针对于修改2020年之后欧盟排放标准的提议 。如果被批准, 此项提议将大幅度降低各国所允许的排放量。至2030年,此排放交易体系下的国家和地区排放量将较2005年水平降低40%。此项提议还将建立一个市场稳定储备以协调此排放交易系统中排放许可的剩余, 以及一个利用ETS收入来提相关行业创新力和现代化进程的基金。
  • 加州的ETS自2013年实施以来,通过逐渐地扩大其范围,如今已经覆盖了85%的州内排放量。2017年7月,加州通过了一项新的立法,来扩展其碳排放限量及交易项目,并且大幅的降低了排放的限量来促进加州实现2030年比1990年排放水平40%的减排目标。
  • 区域温室气体减排行动(RGGI)从2009年已经涵盖了美国东北地区的九个州的发电部门类似于欧盟和加州的项目,许可证的价钱一直以来低于预期。RGGI正在实施重大改革来增强计划的雄心。2017年8月,参与各州提出了一项包含很多改革项目的新计划,旨在刺激更多的减排,包括更加严格的排放限制水平从而使覆盖地区在2030年实现低于2020年水平30%的减排目标。此外,在新泽西州和弗吉尼亚州的新州长选举之后,两州都有可能在2018年加入该计划。


  • 最后是涵盖韩国三分之二国家温室气体排放的KETS。此系统刚刚完成了2015年开始后的第一阶段。2017年底,韩国内阁为2018年分配了初始配额,目前正在确定到2020年之前的排放量上限。也就是说,韩国承诺在2020年之前将温室气体排放量减少相对于常规情景的37%。[6] 韩国ETS的改革将包括逐步取消所有排放许可的免费分配。

这些变化带来的影响还有待观察。但ETS在建立更高效、更显著、更持久的项目目标下一直在不断积累和吸取着经验 。



1. 政策涵盖了哪些排放源?


就如撒大网才能捕大鱼,覆盖范围广泛的ETS将实现更大的减排效果。假如排放许可证的价格是每吨二氧化碳20美元,那么该政策将鼓励市场开发出更多的机会使得减排每吨二氧化碳的费用低于20美元。当然,整个经济中存在的减排机会比任何一个单一领域都要多。涵盖广泛的政策也将增加行政管理的复杂性,因为政策涉及多元的排放源数量和种类 。

涵盖(几乎)整个经济体系的ETS系统的另外一个优势,就是实现全国排放目标在理论上变得较为容易。政策只需把每年期望的排放量指标设定为排放上限,目标将会自然达成。相比之下,覆盖范围较窄的ETS系统只能成为实现整个经济体系排放目标里的一小部分政策战略,因为ETS涵盖范围外的排放量会持续增加。正如接下来探讨的适用于中国的计划,如果 ETS系统不设定排放上限,那么实现目标的战略配方也将会变得更加复杂。

美国纽约州是RGGI交易计划中最大的一个洲。它的经验诠释了政策覆盖范围狭窄的问题。纽约州承诺将于2050年减少80%的温室气体总排放量。[7] 但是RGGI政策仅涵盖电力行业的排放量,占总体经济排放量的四分之一。2012年至2015年期间,纽约州电力行业的二氧化碳排放量下降近10%,但供暖和交通运输排放量的增加使纽约州整体二氧化碳排放量同比增长4%。[8]

相比之下,美国加利福尼亚州的ETS涵盖了温室气体总排放量的85%[9],也因覆盖大部分经济活动而成为达到总体排放目标的可靠工具。加州空气资源委员会界定规划(Air Resources Board’s Scoping Plan)指出加州将采取逐年递减的排放上限以实现加州2030年的目标。[10]


从宣布规划至2017年12月期间内,中国的决策者显然改变了主意,将政策初步规划范围缩小到仅限于电力行业。初始阶段将从涵盖大约7000个设施缩减到大约1700个设施,相当于全国三分之一的化石燃料二氧化碳排放总量。[14] 虽然覆盖范围比初始规划的有所减少,但是从全球角度出发,政策覆盖面依然庞大,涵盖了全球10%的化石燃料二氧化碳排放量。[15]

随着时间的推移,从窄到宽的政策规划是一种可以理解的政策实施方法,因为它既为监管者提供了一个平稳的过度,也为行业决策者提供更多的可预测性。在管理机制准备好前,最好先启动计划。欧盟和加州都同样在政策上采用了从窄到宽的机制。但同时,此方法的弊端显而易见: 中国政策的减排效果在短期内将大幅度减少。如同在美国施行RGGI的州一样,仅涵盖电力行业的ETS系统不会达到覆盖整个经济体系的减排效果。

2. 目标是否严格?ETS系统下的排放轨迹是否会远远低于没有该政策的情况?


  • 预测在没有ETS情况下的未来排放量或排放率(“预测基准”或“常规情景”预测)
  • 将排放量(或排放率)限定在明显低于预测基准的水平
  • 发放或拍卖符合限定的排放许可


最早的ETS设计和实施源于21世纪初。在那之后,至少有两件未能预见的重要事件发生:(1)2008年的金融危机导致经济增长低于预期;(2)天然气产量出现大量增长,导致某些区域的天然气价格大幅度的低于预期。这两件事情促使了整体排放总量低于ETS设计之初的预期。 例如,2009年RGGI计划涵盖的排放总量是1.25亿吨,然而2009年的排放上限却设定在1.8亿吨。[16]排放上限远远高于实际排放总量的ETS系统是虽方向正确但没有实际意义,就如同减肥期间把饮食限量设定在10块蛋糕以下。[17]



由于欧盟碳排放交易系统中限额的过度供给和长期价格低迷,英国事实上已经设立了发电产生的排放污染的价格下限。这个价格下限自2013年以来促使英国高碳排放的煤火发电迅速减少。[18] 美国的加州碳排放总量控制与交易和RGGI也有同样的价格下限,其碳排放许可的价格也通常保持在价格下限水平之上。为了把其项目延长至2030年,美国加州和RGGI也在逐步提升价格下限。 除了价格下限之外,部分RGGI州也在采取第二套措施来解决减排目标缺乏强制性的问题,即“控制排放储备”。这些措施在碳排放许可的价格低于一定水平之时,政府不再发放许可(事实上降低排放上限)。[19]


在欧盟启用碳排放交易系统早期,各成员国都可以采用对外部利益相关者来说并不透明的方式制定自己的上限并根据自己的需要发放许可。这种规定使不同国家没有理由不去“过度发放”免费排放许可。[20] 最近,例如2016年,当许可价格超过预期价格时,韩国政府对其2016年的排放上限就作出了各种调整,包括发放更多的额外许可,同时允许有关受管制部门借用未来年份的许可指标。[21]


造成ETS排放上限缺乏强制性的第三个原因是不佳或者过时的预测。对未来能源体系的预测充满了不确定性。但对于相关政策制定者来说,他们必须对在没有政策约束下排放的变化前景作出预测,因为他们需要理解排ETS的强度(以及相关政策的代价和收益)。如果相关预测系统性地高估或者低估未来的排放量,这会使政策制定者判断排放上限强度时造成错觉。事实上,近年来能源部门最常见的预测都一致地低估了低碳技术的发展,从而高估了未来排放量。[22] 这也部分造成了ETS的排放上限设计缺乏强制性的理由。

例如,美国奥巴马政府的清洁能源计划(CPP)就对美国各州发电厂排放设定了限额,并鼓励各州通过ETS来实现目标。据公布CCP时美国政府的分析,ETS对几乎所有州的减排都会起到很大作用。[23] 然而,这项分析使用的预测对太阳能、风能、和能源效率的假设过于保守,远低于行业专家对这些能源的单项预测[24],结果导致该计划看起来比实际严格得多(依某些利益集团人士来看纯属苛刻)。独立研究表明清洁能源计划的排放限制相对宽松,许多州根本不需要制定法规就可以达到减排目标。[25]

尽管(由奥巴马政府设计的)清洁能源计划未能得以实施,美国的部分州也已经开始转向使用电力部门的ETS。这些州的项目也可能会受到缺乏强制性的排放上限的影响。比如计划加入区域温室气体减排行动的弗吉尼亚州,于2017年11月公布了一项ETS,设立了至2020年每年减排3%的目标,以达到减排总量至3300或3400万吨 。荣鼎咨询公司的研究表明,如果没有碳排放交易系统,弗吉尼亚州2020刀2030期间的排放量会低于上述水平。[26] 除非对上限水平加以调整,这些上限对该州的减排无法起到明显作用。[27]


尽管可能有违于直觉,有关中国ETS强制程度的第一个预警信号在于,中国在改善地方空气质量和减缓温室气体排放上升方面所取得的进展。直到不久以前,中国的传统污染源和温室气体排放都一直呈快速上升趋势 。仅在2000至2010年的十年间,排放量就增加了不止一倍。但近几年的变化很大。随着中国经济转轨到新的增长模式,经济发展速度减缓并开始从建筑、制造等高耗能产业转移。这种转型同时也使经济增长进一步减慢。与此同时,中国也开始实行一系列控制煤炭使用和支持清洁能源技术开发的有力政策 。例如,中国的第十三个五年计划(2016-20)就包括了禁止在2018年前新建煤电厂。因此,尽管未来十年能源需求和温室气体排放预计都会继续上升,中国的煤炭消耗和由此产生的排放增长都似乎已接近封顶(有些预测认为在目前政策条件下,排放在2030年以前就会封顶).[28]把碳排放交易系统的目标和国家2030[29]年排放到达峰值的目标联系一致,可能是建立解决强制性缺乏问题的排放交易系统的好方法。这样的交易系统不会把排放量降低到本来就可以达到的目标水平之下。当然,中国也可以修改其国家目标,或把ETS和更严格的目标结合起来。                                                                               


第二个问题是,与本文所涉及的其他交易系统不同,中国并未提出基于体积排放限制(或“基于质量排放限制”)的 ETS。相反,中国提出使用基于“比率”的排放上限,这意味着相较于其他设施类别的排放率基准而言,这个系统所覆盖的设施将根据其排放与其自身产量的比例(或“排放率”)来制定排放上限。在电力行业,这些基准很可能以每兆瓦时的排放量为依据。预计(在撰写本文时,并不完全明晰)不同设施类别(例如,不同类别和不同规模的煤电厂)的排放率目标会有所不同。[30]

如果目标设定在远低于基准线的排放率水平,基于比率的目标政策也可以很有力度。然而,在既定的水平上,基于比率的方法在降低排放上的效率是低于基于质量的方法的。[31] 基于比率的系统的优点在于,它在提高减排率的同时可以减少对价格的影响。此外,在经济条件允许时,它的优点还在于可以保持产量和减放量持续增长。从中国经济决策者的角度来看,这一政策很有说服力;它避免了对电力系统中的生产者和消费者产生过于突然的影响。然而从环保倡导者的角度来看,基于比率的交易在带来灵活性的同时也引入了潜在的风险——因为排放量可能会增长而不是缩小。[32]



3. 现有什么系统来核实减排是否落实?



有效的政策需要严格的监管,以确保所有排放都获得许可进行排放。否则,受监管实体可能会漏报甚至于不按照要求申报许可。幸运的是,基于早期的ETS实践,这样的情况鲜有出现。政策通常要求报告的排放水平由经认可的独立方进行核实,并且在必要时对违规者进行罚款(通常是排放许可证价格的许多倍)。[33] 违规者甚少的原因还在于监管机关通常在ETS启动之前就积累了监测和核实排放量的相关经验,例如20世纪90年代设立的韩国温室气体和能源目标管理体系。[34]




确保可靠的减排量对中国新的ETS来说尤其具有挑战性。首先,中国能源部门没有相应的体系来确保获得和早期ETS国家相同的广泛可用的、及时的和准确的统计数据。[36] 这可能导致受监管实体报告不准确的排放量绩效,并且加大监管机构执行ETS的困难。

中国可以克服这些挑战。事实上,中国已经一次又一次地展示了自己建立新体制及其运行机制的能力,这些体制正是中国领导人对其认为的当今面临的主要挑战的回应。中国正在通过国家统计局,国家能源局和国家发展和改革委员会逐步投资能源数据系统。此外,诸如美国能源部(DOE)和国际能源署(IEA)等外国合作伙伴已经将促进中国在这一领域的进步放在优先位置,并为此提供了大量的资源。[37] 这些努力的成果将显著影响中国新的ETS带来的减排成效。



自2017年12月起大约将运行一年的第一阶段重点将放在“基础设施建设”——建立监测、报告、核实(MRV)系统、配额注册系统和交易平台。第二年将着重于“系统测试”—— 测试配额,交易,注册和合规系统。第三阶段“发展和改进”-将在电力行业中全面实施中国的ETS,并在随后几年中扩展到其他行业。[38] 这种分阶段的发展和部署虽然将限制中国ETS短期内获得显著成果,但能便于中国监管机构制定强有力和持久的项目。


如果中国能成功解决了前文提到的三个问题 ——广泛的范围、严格的上限、强有力的规则来确保减排是真实的,那么中国的ETS将大幅推动减排。但是其他因素对排放及ETS经济影响也起着至关重要的影响。 完整的清单超出了本文的范围,但我们在这里提到两个例子:(1)收入是否来自配额分配以及如何使用这些收入;(2)碳价格信号是否将传达给消费者。


ETS可以拍卖排放许可证或向受监管个体免费分配许可证。采用免费分配部分许可证的设计存在多方因素,特别是在项目的早期阶段,包括保护国内产业,向新的政策制度平稳过渡,并在政策上获得政治支持。但经济学家普遍认为,为了最大限度地提高政策的成本效益,ETS应最终拍卖大部分排放许可证,并有效使用拍卖收入。归根结底,免费分配许可证等同于将资产转移给受监管个体。[39] 将这些资产转化为政府收入可更有利于经济,例如资助公共物品投资,减税,或保护弱势家庭免受物价上涨的影响。



目前尚不清楚中国的ETS是否将会拍卖排放许可证及如何使用这些收入。一些评论家建议, 应免费发放排放许可证,至少在ETS的初始运营阶段[40],而另一些人则说这仍尚待决定。[41]七个市省的试行ETS中有两个采用了拍卖来分配部分配额:湖北拍卖了低于30%的配额,而广东仅拍卖了3%。[42]





价格信号失灵的另一个原因是交叉法规。如果司法管辖区在实行ETS的同时实施其他特定低碳政策,这就阻碍ETS鼓励成本最低的减排机会。例如, 加州在 “无气候政策”的基准上收紧了排放上限,但由于其他直接或间接应针对温室气体排放的政策,例如燃料效率标准、低碳燃料标准、可再生能源比例标准和能效政策,ETS的价格信号仍然相对较弱 。加州估计,从2020年和2030年之间,ETS将激励该州略低于40%减排,而其他政策将促进超过60%减排。[43] 欧盟和RGGI州同样存在重要的交叉政策。交叉的政策不一定是重复的;其他措施往往有不同的政策依据,如推动创新,减少空气污染或增加能源安全。政治扮演着同样重要的角色;与碳价格相比,与可再生能源比例标准或燃料经济性标准等法规相关的成本对消费者而言通常透明性更低。


对于最终的价格信号来说,可能更重要的是中国能源定价的本质。基本上中国经济并不以市场为基础。[44] 许多能源价格是由行政而非经济基本面决定的; 因此,将增加或减少的合规成本(例如,对于效率低下或高效运行的发电厂)转移给消费者更为困难。[45] 在电力行业中,投入价格的变化不会自动反映在给消费者的电价成本中。相反,定价可能受到行政决策,调度协议和国有企业幕后势力的影响。







[1]. Robert Stavins,《我们应该怎么看待中国宣布国家二氧化碳交易系统?》, An Economic View of the Environment (blog),2018年1月7日,http://www.robert-

[2].《CAIT 气候数据浏览:中国》, 世界资源研究所, le/ China.

[3]. 欧盟排放交易系统规模刚刚达到20亿吨二氧化碳相当排放量。详情参考Easwaran Narassimhan, Kelly S. Gallagher, Stefan Koester, and Julio Rivera Alejo的《实践中的碳价格:对证据的审查》(迈德弗德,马塞诸塞州:气候政策实验室:2017年),10,https://sites.tufts. edu/cierp/ les/2017/11/Carbon-Pricing-In-Practice-A-Review-of-the-Evidence.pdf.

[4]. Gabriel Wildau,《随着政策的转移,中国的污染控制对增长造成冲击》,金融时报,2017年12月17日, m/content/1b245c3e-e08e-11e7-a8a4-0a1e63a52f9c. Also see Gabriel Wildau, “China Backs Away from Long-Term GDP Targets,” Financial Times, October 26, 2017,

[5]. 参考例子,Paula DiPerna,《游戏规则改变:中国正式宣布国家电力行业总量控制与交易》, CDP,2018年1月11日, the-game-changes-china-o cially-announces-national-power-sector-cap-and-trade, 及Michael Holder, “中国的'巨大'新排放交易计划”, GreenBiz, 2017年12月21日,

[6].“南韩 ”,气候行动追踪组织,2017年11月6日, countries/southkorea.html.

[7].“Cuomo州长与副总统Gore宣布减少温室气体排放的新举动并在气候问题上引领国家”, 纽约州,2015年10月8日, nounces-new-actions-reduce-greenhouse-gas-emissions.

[8].“各州的二氧化碳排放数据”, 美国能源信息署,https://www.

[9]. 见环境与能源解决方案中心C2ES“项目总结”, nia-cap-and-trade/.

[10].“2017年加利福尼亚州气候变化计划范围”, 加利福尼亚州空气资源部,2017年11月,

[11]. Zhang Mengya, Liu Yong, Su Yunpeng,“欧盟与中国碳排放交易系统对比”,  Climate 5, 第三期(2017年9月),第70页. doi:10.3390/cli5030070.

[12]. 此声明出自于中国在第21届巴黎联合国气候变化框架公约大会前对华盛顿进行的国事访问 (2015年12月)。

[13]. “中美气候变化的联合总统声明”,白宫, 2015年9月, ce/2015/09/25/us-china-joint-pres- idential-statement-climate-change.

[14]. Matt Carr,Shen Feifei,“中国正在为应对气候变化创建庞大的碳市场”, 彭博,2017年12月19日, climate- ght-quicktake-q-a.

[15]. Zeke Hausfather,“分析:全球碳排放会在三年平稳期后于2017年增长2%”, CarbonBrief, 2017年11月3日, analysis-global-co2-emissions-set-to-rise-2-percent-in-2017-following-three-year-plateau. 及Robert Stavins“我们从中国的全国碳排放交易系统的声明中可以学到什么?”, Resources for the Future, 2018年1月,http://www.r .org/blog/2018/what- should-we-make-china-s-announcement-national-co2-trading-system.

[16]. Lara Dahan等,“RGGI:排放交易案例分析”,IETA,2015年4月, bon_Markets/rggi_ets_case_study-may2015.pdf.

[17]. 对于金融危机中出现的经济衰退所引起ETS带动的减少减排的事实可被看做ETS监管系统的一个特征,而非一个弱点。这是因为监管部门无法承担监管费用。经济下滑只是造成减排效果低于预期的众多原因之一。

[18]. David Hirst, 谈价格下限 (CPT) 及 价格支持措施, House of Commons Library Briefing Paper,第05927期,2018年1月8日,第20页。

[19]. Dallas Burtraw 和 Bill Shobe, “排放控制储备预览分析”, 2017年6月14日,http://www.r .org/ les/document/ le/170614_AnECRforRGGI_Burtrawetal.pdf. 区域温室气体减排行动的“控制排放储备”和欧盟碳排放交易系统新提议的“市场稳定储备”有着相似的功能。

[20]. 欧洲委员会,欧盟碳排放交易系统手册(布鲁塞尔: 欧洲委员会, 2015), 43, les/docs/ets_handbook_en.pdf.

[21]. 国际碳行动合作组织,“韩国碳排放交易机制”,2018年2月, out=list&systems%5B%5D=47.

[22]. David Roberts, “能源预测员一直低估风能和太阳能:评论家解释为什么这是一个问题”, 2016年3月25日, eia-forecasts-critics.

[23].“现有电厂的清洁电力计划:监管行动”,美国环境保护署, er-plants-regulatory-actions.html.

[24]. Noah Kaufman 和 Eleanor Krause, “清洁电力计划的经济影响:相同规制的研究如何产生不同的结果”, 世界资源研究所, 2017年1月,

[25]. John Larsen 和 Whitney Herndon, “清洁电力计划本可以作什么”,荣鼎咨询公司, 2017年10月9日,

[26]. John Larsen and Whitney Herndon, “RGGI 扩展: 前方的路”,荣鼎咨询公司, 2018年1月3日,
27. 值得注意的是弗吉尼亚州提议的碳排放交易系统包括了价格下限和控制排放储备,能够在松弛的上限的情况下减少碳排放。

[27]. 弗吉尼亚州提议的ETS包括价格或排放限制储备,如果上限较弱,这两种储备都可以减少排放。

[28].这一段话来自于Climate Action Tracker网站提供的信息和数据来源:

[29]. 按照巴黎气候协议,中国国家自定贡献预案是至2030年非化石来源能源增加到至少占全部一次能源供应的20%,中国经济的碳强度从2005年基线水平上提高60至65%,同时全国二氧化碳排放在2030年或者之前达到峰值。

[30]. Lawrence Goulder和Richard Morgenstern,“中国基于比率的降低二氧化碳排放量的方法: 优势, 局限性和替代方案”, 2017年12月15日,https//; William Pizer和Xiliang Zhang,“中国新的国家碳市场”,2017年12月31日,

[31]. Carolyn Fischer,返还环境政策收入:基于产出的分配和可交易绩效标准,RFF讨论文件编号: 01-22。 (华盛顿特区:未来资源, 2011)

[32]. 这种潜在的问题可能因电力行业内各种设施及其目标的不同而加剧。例如,假设中国碳排放交易系统的规则不要求高排放企业(如亚临界甚至超临界煤电厂)的排放率显著降低,或者如果更多这样的工厂是建立在比较成本效益的基础上的,人们将会看到绝对排放量增长而不是缩小。

[33]. 例如,请参阅上的国际碳行动合作伙伴计划摘。

[34]. Stefan Niederhafner,“韩国能源和温室气体目标管理系统:京都议定书碳排放交易系统的替代方案?”,TEMEP讨论文件。2014:118,2014年10月1日,

[35]. Michael Wara和David G. Victor,“关于国际碳排放的现实政策”,能源与可持续发展工作文件no.74,2008年4月1日,https:// sets /.

[36]. 有些统计年鉴和能源数据集可以在某些出版物中收到,例如《中国统计年鉴》,其中第九章涵盖了能源部分(。 HTM)。尽管如此,现有的资料还没有达到支持市场顺畅运转通常所需的及时性,准确性和可用性水平。有关RGGI下数据要求的示例,请参阅https://。有关EU-ETS下的类似信息,请参阅

[37]. 其中一位作者(Elkind)曾在他美国能源部任职期间以及担任国际能源署理事会副主席期间对该主题提供支持。

[38]. Pizer和Zhang,“中国的国家碳市场”。

[39]. 更糟糕的是,在欧盟排放交易体系的早期阶段,发电厂免费获得排放量但仍将成本转移给消费者,从而在此过程中获得暴利。参见欧盟委员会,EU ETS手册,第43页。

[40]. 例如,见Nectar Gan,“中国的碳交易计划是否会在没有排放上限的情况下运作?,南华早报,2018年1月3日, carbon-market-ambitions.

[41]. 例如,见Stavins,“我们应该如何看待中国公布国家二氧化碳交易体系?”

[42]. Zhang,Liu和Su, “欧盟与中国碳排放交易体系比较”。

[43]. 加州空气资源委员会,加州2017年气候变化范围界定计划。

[44]. 我们并不是故意轻描淡写这个论点。在许多国家,包括那些基于自由市场原则的经济体,能源行业,特别是电力行业,都融合了市场,监管和行政手段。

[45]. Goulder和Morgenstern,“中国基于比率的降低二氧化碳排放量的方法”。


Noah Kaufman是哥伦比亚大学SIPA全球能源政策中心(CGEP)的经济学家和研究学者。 Jonathan Elkind是CGEP高级研究员,曾任美国能源部国际助理秘书长。作者感谢David Sandalow,Tim Boersma和Matthew Robinson对此文初稿提供了有助反馈意见。