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Reducing greenhouse gas (GHG) emissions from industrial operations poses a significant 
challenge due to heat needs ranging from 50–1,600OC (122–2,912OF) as well as process-based 
emissions. The Paris Agreement emphasizes maintaining a global temperature increase “well 
below 2OC and toward 1.5OC” from preindustrial levels. This requires industry to reach net-
zero carbon dioxide (CO

2
) by 2050 or pay for expensive additive, verifiable, and permanent 

o�sets. Given this and the 15–25-year lifespan of major process equipment, all new industrial 
production investments will need to be near-zero emissions by the early 2030s1 or be o�set. 
This will require sectorally and regionally tailored mixes of more material e�ciency, a higher 
volume and quality of recycling, electrification of existing processes, process changes that 
allow switching to ultra-low GHG emission fuel and feedstock, and carbon management. 
These strategies also lead to greatly improved local air quality.

This commentary explains the necessity and challenge of decarbonizing industry, details 
technical areas that will need to be addressed, and provides policy recommendations based 
on those. Facilitating such a massive transformation will require a variety of strategies and 
incentives, such as encouraging expansion of very low GHG electricity, innovating for uptake 
of near-zero emissions processes, and establishing industrial clusters for e�ciency and cost 
reduction. Coordinating e�orts across the country, regionally, and globally will help ensure 
green procurement, GHG accounting, and trade policies are adequate to the task ahead. 

Necessity and Challenge of Decarbonizing Industry

Industry’s greenhouse gas (GHG) emissions are a big and growing problem that has 
historically received little attention. Electricity use, heat needs (ranging from 50–1,600OC 
[122–2,912OF]), and chemical process carbon dioxide (CO

2
) (e.g., from cement, lime, hydrogen, 

and other chemical production) create the largest amount of such emissions, as shown in 
Figure 1. Direct combustion of coal, natural gas, and refined petroleum products for industrial 
heat emitted 7.0 gigatons of CO

2
 equivalent (Gt CO

2
e) in 2019, or 11.9 percent of all global 
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GHG emissions that year (which totaled 58.9 Gt CO
2
e).2 Once process emissions (3.1 Gt CO

2
e) 

are added, such as for cement, this rises to 17.2 percent. When adding purchased heat (1.7 Gt 
CO

2
e), purchased and self-generated electricity (4.3 Gt CO

2
e), product use (0.2 Gt CO

2
e), and 

non-CO
2
 GHGs (1.5 Gt CO

2
e), the total rises to 30.1 percent. Industry’s emissions have grown 

more since 2000 than any other sector, at 2.7 percent per year.   

Figure 1: Global industrial greenhouse gas sources by sector, 2019    

    
 
 
Source: IPCC, Climate Change 2022: Mitigation of Climate Change, April 4, 2022, ch. 11, https://www.ipcc.
ch/report/ar6/wg3/.

Before the Paris Agreement was adopted in 2015, industrial GHG mitigation was focused on 
energy e�ciency, coal-to-gas or electricity fuel switching, and carbon capture and storage 
(CCS). In projections simulated by global models, industry was allowed to maintain roughly 
half its emissions in 2050, compensated by negative emissions from bioenergy combined with 
CCS in the power sector.3

Energy costs can be significant in some heavy industry sectors, leading these sectors to 
pursue energy intensity reductions over the decades, typically 1–2 percent per year. Continued 
improvements are getting harder to find, however, as use of best available current technology 
in steel, cement, and other facilities becomes more common. Size and systems integration is 
the remaining option for further e�ciency improvements. 

Coal and natural gas are still considerably cheaper than electrification in most places, 
limiting its adoption. Meanwhile progress with CCS has been largely confined to natural gas 
processing with a smattering of ethanol and hydrogen production facilities and a single steel 
plant, with all sharing the characteristic of producing a concentrated stream of waste CO

2
, 

bypassing the most challenging step of separating the CO
2
 from nitrogen in waste flue gases.4
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In sum, industry has been widely regarded as “hard to abate,” none the less because major 
process equipment, like furnaces and boilers, lasts 15–25 years between major renovations, 
and industrial commodities trade in global markets, making carbon leakage from one region 
with strong climate policy to one with weaker or absent policy a distinct possibility.

The Paris Agreement utterly changed the industrial mitigation discussion. Under the new 
targets, any industrial facility still emitting CO

2
 in 2050 will likely have to pay for permanent, 

additive, verifiable, and expensive atmospheric carbon dioxide removal (CDR) o�sets, 
projected to cost $200–600 in the near term, and at least $100–300 per ton in the 2030–
2050 period.5 This change in framing sent analysts, modelers, engineers, and companies back 
to the drawing board. What emerged in the 20186 and 20227 Intergovernmental Panel on 
Climate Change (IPCC) reports was that Paris Agreement compliant mitigation will require 
considerable process changes, as detailed in the next section. Most of the technology involved 
already exists at the pilot to near commercial level but requires both a fundamental change in 
the approach to industrial demand and production and a systemic uplift in policy stringency.

Technical, Behavioral, and Systems Solutions

A systemic, multi-strategy approach to decarbonizing industrial electricity and heat use as 
well as eliminating process emissions is illustrated in Figure 2, as advanced in the Industry 
chapter of the latest IPCC report.8 Below the figure the author explains the technical 
strategies, sector applications, and policies needed to drive the changes.

Figure 2: Strategies for decarbonizing industry    

  

 
Source: Author configuration based on IPCC, Climate Change 2022: Mitigation of Climate Change, April 4, 
2022, ch. 11, fig. 11.9, https://www.ipcc.ch/report/ar6/wg3/.

Carbon management • Use CCU, bio, and air capture-based synthetic  
   fuels; CCS; CDR
• Key example: cement

Process changes 
allowing use of 
low-GHG energy

• Use hydrogen for reduction, electricity for melting
• Key example: steel

Electrification and 
fuel switching of 
existing processes

• Use heat pumps for up to 150OC heat, RNG    
   for fossil methane
• Key examples: food and small manufacturing

Circularity 
(i.e., more recycling)

• Maximize high-quality metal and plastics 
   reuse and recycling
• Key examples: steel and chemicals

Demand and 
material efficiency

• Use design and building codes to minimize 
   GHG-intense materials
• Key examples: steel and cement

Energy efficiency • Maximize end use and system efficiency
• All sectors
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Material e�ciency through better design and building codes could reduce cement use by 

up to 26 percent globally and steel by 40 percent.9 Achieving this revised procurement will 
require architectural and engineering education and building codes that encourage material 
e�ciency. While results will be extremely jurisdiction-specific, a building in Chicago was 
recently built with 27 percent less concrete and 8 percent less steel using known and already 
approved techniques.10

More circularity, initially through much more and higher quality recycling, will be central to 

reducing emissions from most metals and plastics. Recycled metals and plastics are far less 
energy and carbon intense. While most iron is recycled today, more at higher quality levels 
could be recovered with e�ort and design to minimize contamination, especially with copper.11  
Only about a quarter of aluminum is recovered, and recycling of all metals could improve.12  
Only about 5 percent of polyethylene is recycled.

Energy e�ciency should be maximized. While firms should invest in electrification and 
near-zero emissions processes as soon as they are available, and participate in programs to 
commercialize them, where near-zero emissions versions aren’t available the highest e�ciency 
fossil fuel versions will help reduce cumulative emissions. There are also substantial remaining 
e�ciencies in process and integrated system refinement, often through digital monitoring and 
modelling of plant processes.13   

Electrification and other fuel switching of existing processes can lessen GHG emissions. 

Where technically and economically feasible, most coal-to-gas switching has already occurred. 
A significant GHG benefit can be derived from reducing upstream fugitive methane to less 
than 0.5 percent,14 but the next big jump is clean electrification for heat, with some interim 
replacement of fossil methane gas with low GHG bio or synthetic methane, also known as 
“renewable natural gas.” Many forms of electrification for industry are possible today, directly 
through electrothermal or induction heating or indirectly through industrial heat pumps, which 
can reach up to 150OC (302OF) and e�ciencies of 400 percent at lower temperatures.15 The 
a�ordability of heat pumps, however, is highly sensitive to relative regional natural gas and 
electricity prices, as well as access to a heat source to concentrate (e.g., industrial waste heat). 
They are generally more expensive than using natural gas or coal directly for low heat levels 
without significant carbon pricing, and electrification at higher heat levels than those achievable 
by heat pumps imposes challenging time-specific capacity needs on the electricity grid.

Industrial process changes can allow the use of zero-emissions fuels and feedstocks. 

Fundamental changes to steel, chemical, and other material production are being 
commercially piloted that will allow use of electricity, hydrogen, ammonia, low GHG carbon, 
or derivatives to be used as chemical feedstocks and replacement for methane and coal 
for delivering heat at all levels. Several hydrogen-based technologies have emerged to 
replace the use of coal as the reductant in blast furnaces for making steel,16 and electro 
heated17 and electrocatalytic chemical processes are being explored.18 Synthetic net-zero 
liquid and gaseous fuels and feedstocks are commercially feasible with biomass or direct 
air capture carbon sources, but are considerably more expensive than today’s fossil fuels. 
Low GHG hydrogen is a key element of many strategies and will be needed for process heat 
and chemical feedstocks.19 Some regions will start with hydrogen made from methane and 
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CCS (“blue” hydrogen),20 while others will go directly to hydrogen made from electrolysis 
(“green”).21 Low GHG hydrogen may allow global trade in ammonia or methanol as an 
energy carrier. Green hydrogen production also produces oxygen, which is useful for oxy-
combustion—which makes CCS easier—and as a feedstock for synthetic net-zero hydrocarbon 
and alcohol fuels and feedstocks.

Carbon management (i.e., flue gas CO
2
 capture, utilization of waste CO

2
, sourcing of lower 

GHG carbon sources like biomass and direct air capture, and permanent geological storage) 

will be necessary for several sectors and legacy assets. The first applications will likely 
focus on the capture of concentrated flows of CO

2
 from formation gas cleaning, hydrogen 

production, refining, and cement production. A breakthrough in post combustion capture 
would allow wider use (e.g., for blast furnace steel made with coal, glass, or ceramics).22  
Combined with low GHG hydrogen and oxygen, low GHG carbon sources may also allow 
some continued use of synthetic net-zero methane for legacy buildings and industry, 
as well as methanol, ethanol, ethane, and ethylene for chemical production. Taken to its 
logical conclusion, with ever less CO

2
 in the atmosphere, ever more recycled, and ever more 

underground, carbon management could lead to net-negative CO
2
 flows from the atmosphere 

back into the earth, also known as carbon dioxide removal (CDR).23 

Another strategy for decarbonizing industry would involve physical facility clustering. 
Carbon capture and use (CCU), CCS, blue and green hydrogen, electrification, and waste 
heat cascading and reuse with heat pumps will all be cheaper and easier if facilities are 
located closer together, sharing infrastructure, possibly in preplanned and approved net-zero 
industrial clusters.24 While hydrogen production and storage as well as carbon collection, 
transport, and disposal are already commonly discussed, industrial heat pumps will also be 
far more economic if they have access to 40–50OC (104-122OF) industrial waste heat sharing 
systems as opposed to 0–25OC (32-77OF) ambient heat. The International Energy Agency 
(IEA) has suggested that industrial seaports with existing hydrogen production for refineries 
could be key catalysts for such clusters.25

These strategies translate to the following actions by sector in near-zero emissions scenarios 
for industry26:

 ● Steel production will maximize use of recycled scrap processed in electric arc furnaces, 
with quality and volume top ups of new primary iron made using processes that use 
hydrogen (direct reduction) or electricity (molten oxide electrolysis) instead of coal to 
separate elemental iron from iron ore.27 If there is a breakthrough in post combustion 
carbon capture, purpose-built, coal-based blast furnaces may be chosen. Another 
related possibility, if gasification of biomass can be mastered, is using sustainable 
biomass combined with CCS to replace fossil fuel coal to get near net negative.28

 ● Cement and concrete production will maximize use of cementitious material 
substitutes (e.g., slags, ground limestone, and calcined clays), and some combination 
of CCS and clean process heat will be used for making clinker.29

 ● Chemicals production, combined with intensive plastics recycling, switches to near-
zero GHG hydrogen, oxygen, and eventually carbon (through CCU, biogenic sources, 
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and direct air capture) with low GHG process heat and eventually electrocatalytic 
processes that directly use electricity to make chemicals.30

 ● Aluminum production fully switches to ultra-low GHG electricity and inert anodes with 
no process emissions.31 

 ● Pulp and paper switches to fully biogenic energy sources or clean electricity and 
eventually becomes a supplier of biogenic carbon to the chemicals industry for fuels 
and feedstocks.

 ● Light manufacturing, food processing, and some chemicals use direct electrification, 
industrial heat pumps, bioenergy, direct solar energy, hydrogen, and synthetic net-zero 
fuels depending on the heat needs.32 

If accomplished, decarbonization of industry will lead to several benefits besides slower 
climate change. Along with personal transport and building electrification, it can help lead to 
dramatically improved air quality, helping reduce some of the five to nine million early deaths 
globally due to poor local air quality.33 While less studied, it is expected that water use will fall 
and less toxics associated with hydrocarbons will be emitted.

Policy and Industry Recommendations

Policy makers and industry leaders seeking pathways toward industrial decarbonization could 
consider the following actions:

Create policies to ensure a large, growing, reliable, and relatively inexpensive supply of 

very low GHG electricity. This is for direct electrification, making hydrogen, and generally 
powering the overall industrial ecosystem (e.g., heat pumps, electrolyzers, and CCS separation 
and compression units). Industry can help by reducing demand during peak periods and 
adding the capability to absorb o�-peak electricity by transforming it into hydrogen and 
storing several days’ capacity underground to meet daily fuel and feedstock needs.34 Also, in 
regions with su�cient resources, industrial players may be able to reduce strain on the grid 
by building their own dedicated variable and firm clean power sources35 and transmitting and 
sharing those on the grid as necessary.

Speed up the process of innovation and early-to-late commercialization for near-zero 

emissions, with a focus on intensive staged research and development followed by 

development of public and private lead markets to reduce risk. Funding needs to be 
boosted for the entire innovation supply chain, but mostly for early-to-late commercialization. 
Government and private green procurement and instruments like contracts for di�erence 
could create lead/niche markets to bridge the early commercialization valley of death and 
reduce risk, and therefore capital costs.

Establish industrial clusters to reduce the cost of blue and green hydrogen and CCS and 

to allow waste heat reuse with industrial heat pumps. This requires national and regional 
governments, and perhaps coalitions of firms, to map existing industry (especially where 
hydrogen is made and used today), renewable energy supplies, CCS geology, and transport 
networks. The IEA36 indicated that industrial seaports near good sun, o�shore wind, and CCS 
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geology are likely early candidates, such as Rotterdam in the Netherlands; Galveston, Texas, in 
the US; and Teesside in the UK. A case study by Friedmann et al. considered Houston, Texas.37 
Heat sharing systems could capture waste heat from heavy industry and make it reusable for 
lighter industry using industrial heat pumps, improving their economics in turn.

Drive broad market uptake of near-zero industrial options by enacting policies including 

low-interest loans and tax credits to overcome capital-expenditure-intense investments like 

heat pumps, heat and steam GHG standards, carbon pricing, and performance regulations. 
These could influence the next big investment cycle from 2025 onward, and especially after 
2030, but the policies need to be su�ciently strong to make near-zero emissions technologies 
the default for all new retrofits, renovations, and new builds.

Establish international coordination with regard to green procurement, GHG accounting, 

and trade policies (e.g., border carbon adjustment and standards). Green procurement 
will have faster transformative e�ects if countries work together to demand it and fund it, 
and sharing the risk will reduce the individual country’s risk. All climate policies pertaining 
to industrial commodities require robust and relatively easy-to-use GHG accounting, even 
if a traded good or commodity is sequentially processed in several regions. Most industrial 
commodities are highly traded, and strong but expensive e�orts to decarbonize in one region 
could lead to leakage of dirty production to regions without climate policy. This circumstance 
has already led the EU to announce it will impose a carbon border adjustment mechanism 
for steel, aluminum, cement, and electricity.38 Trade policies could be structured to reshape 
supply chains to allow the processing of commodities (e.g., reduction of iron ore)39 in regions 
with low-cost renewables or CCS geology for shipment to demand regions for final processing 
(e.g., making steel in electric arc furnaces).

Conclusion

Given the 15–25-year lifespan of major process equipment, all new industrial production 
investments will need to be near-zero emissions by the early 2030s to keep the global 
temperature rise below 1.5–2OC, a key Paris Agreement target. Industrial decarbonization is 
often framed as decarbonization of heat, or hydrogen, or CCS. Though all of these strategies 
will be part of the transition, a whole range of other options exist. These include sectorally and 
regionally tailored mixes of more material e�ciency, circularity/recycling, electrification using 
existing processes, fundamental process changes to allow ultra-low GHG fuel and feedstock 
switching, and carbon management. Incorporating these process changes will require a 
systemic, multi-strategy approach, including the following:

 ● Regional and national governments crafting policies that ensure an adequate and 
a�ordable supply of very low GHG electricity for direct use and for making hydrogen 
and derivatives. 

 ● Governments working with industry to speed the process of innovation and early-to-
late commercialization for near-zero emissions, with a focus on developing public and 
private lead markets to reduce risk. 

 ● National and regional governments establishing preplanned and zoned industrial 
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clusters to reduce the cost of blue and green hydrogen and CCS and to physically 
allow waste heat reuse with industrial heat pumps. 

 ● Policy makers encouraging broad market uptake of near-zero industrial options 
through loans and tax credits to overcome capital-expenditure-intense investments 
like heat pumps, standards for heat and steam GHG intensity, pricing of carbon, and 
regulations governing performance.

 ● Like-minded, ambitious national governments working together to establish 
international coordination of green procurement, lifecycle material GHG accounting, 
and trade policies.

Key future research directions could include investigation of rules of thumb for investment 
in new process equipment and facilities by industrial firms and for policy formation. These 
investment and policy benchmarks would be sector-, region- and jurisdiction-specific, and 
would require dynamic conversations with all key stakeholders.40 
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