

Hydrogen Now to 2030: Opportunities & Limits in a Circular Carbon Economy

Julio Friedmann and Alex Zapantis Aug. 26, 2021

THE CIRCULAR CARBON ECONOMY: KEYSTONE TO GLOBAL SUSTAINABILITY SERIES assesses the

opportunities and limits associated with transition toward more resilient, sustainable energy systems that address climate change, increase access to energy, and spark innovation for a thriving global economy.

https://circularcarboneconomy.co/resources/

2

These ten years: decisive on climate and energy transition

Circular Carbon Economy: Faster & farther with hydrogen

Reducing the production of CO₂ and other Greenhouse Gases as by-products (e.g. energy, efficiency, renewables etc.) **Reusing CO₂** and other Greenhouse Gases without chemically altering their composition (e.g. EOR, CO₂ as working fluid) Recycling CO₂ and other Greenhouse Gases by chemically altering their composition (e.g. urea, methanol, bioenergy).

Recycling CO₂ and other Greenhouse Gases after they are already produced (e.g. carbon capture, nature based solutions).

Source: CCE Guide, 2020

www.energypolicy.co

5

Clean hydrogen is produced from

- biomass <u>or</u> coal <u>or</u> gas + CCS; <u>or</u>
- electrolyzers powered by renewable or nuclear electricity

Life cycle footprint depends on inputs (including upstream emissions) and CCS

High level of technical readiness level

- Blue: TRL 9 (SMR)
- Green: TRL 9 (PEM & Alkalai); TRL 6 (solid oxide)
- Bio: TRL 8 (gasification)

Large set of potentially important tech & innovation opportunity

Blue, green, and bio-hydrogen can be produced today at commercial scale

Source: Fan et al., 2021

Zero-C fuels from H₂ are required for wide use

Liquid H₂, ammonia & zero-c methanol all available today

Ammonia looks good, esp. for ships

- Short-term: retrofit current fleet at 40% blend
- Long-term: carbon neutral solution
- Lowest cradle-to-gate cost
- Production & combustion on existing fleet has no technical barrier
- Largest barriers: cost and port infrastructure

Fuel cell upgrades provide much

- higher efficiency (30% ➡ 60%)
- health and environmental benefits (no SOx, NOx, PM)

Source: Fan et al., 2021, after Zhou et al. 2018

Blue Hydrogen

Clean hydrogen (high % capture + low upstream emissions) can deliver multi-gigatonne abatement every year

Source: Global CCS Institute, 2021

10

Clean H₂ production and utilisation must increase from ~1Mtpa to hundreds of Mtpa by 2050.

Blue H₂ production is mature & available at scale now

Facility	H ₂ Production (tonnes/day)	H ₂ Production Process	Operational Commencement
Blue hydrogen			
Enid Fertiliser	200 (in syngas)	Methane reformation	1982
Great Plains Synfuel	1,300 (in syngas)	Coal gasification	2000
Air Products	500	Methane reformation	2013
Coffeyville	200	Petroleum coke gasification	2013
Quest	900	Methane reformation	2015
Alberta Carbon Trunk Line - Sturgeon	240	Asphaltene residue gasification	2020
Alberta Carbon Trunk Line - Agrium	800	Methane reformation	2020
Sinopec Qilu	100 (estimated)	Coal/Coke gasification	2021 (planned)
Green hydrogen			
Trondheim	0.3	Electrolysis; Solar	2017
Fukushima (largest operating)	2.4	Electrolysis; Solar	2020
NEOM	650	Electrolysis; Wind + Solar	2025 (planned)
AREH	4800	Electrolysis; Wind + Solar	Possible after 2028
www.energypolicy.columbia.edu f y @ @ColumbiaUenergy			

Source: Global CCS Institute 2021: Friedmann et al., 2020: Renew Economy 2020

Blue H₂ production is cost-competitive

Production costs from four recent publications:

- CSIRO 2018
- IRENA 2019
- IEA 2020
- Hydrogen Council 2020

Caution: The basis for each cost estimate (e.g. assumed capacity factors, fuel & electricity costs) differs between studies. Actual costs will always be site-specific.

Source: Global CCS Institute, 2021

Blue H₂ production is not resource constrained

Resources required to produce 1.76Mt of clean H₂, equivalent to the annual production of the proposed Australian Renewable Energy Hub Project

Source: Global CCS Institute, 2021

CO₂ geological storage capacity is more than adequate

CO₂ geological storage capacity required to produce 1.76Mt of clean H₂ (1 AREH Project)

Renewable electricity delivers more abatement displacing fossil electricity generation than if used to produce H₂ which then displaces combustion of natural gas.

Renewable energy should be used to displace fossil electricity generation in preference to H₂ production

Emissions Intensity of Electricity Displaced by Renewable Electricity (tCO₂e/MWh)

Source: Global CCS Institute, 2021

Green Hydrogen

Costs & footprint vary by technology, market and inputs

Alkali electrolyzers are lower efficiency, lower cost & more available today

Costs falling quickly for renewable power & electrolyzers

Function of learning rate, deployment, local conditions & technology

Cost distribution by case

Monte Carlo analysis: 12,000 simulations per case market average prices today, 5% WACC

Infrastructure limits will delay deployment & add to system costs

- Transmission lines
- Power build-out
- Electrolyzer costs

Mix of blue & green H₂ delivers lower cost + greater volumes

Global hydrogen demand (2030 & 2050; IEA scenarios)

Source: Fan et al., 2021

Geography of fuel production shifts green H₂

More production globally, but farther from demand centers today

Source: Fan et al., 2021

www.energypolicy.columbia.edu | f y @ @Cc www.globalccsinstitute.com @Glovaroos

Policies and Recommendations

The policy landscape is changing very quickly

US

- Administration: net-zero goals (power by 2035; nation, by 2050); 10 industrial demos (incl. hydrogen & CCS)
- Congress: Innovation investment & authorization; 45Q & renewable tax extenders
- In progress: PTC/CfD for hydrogen; further 45Q expansion; transmission, port, pipelines

EU & UK

- Zero-C hydrogen infrastructure (blue & green) including power-to-X, CO2 pipelines, ports, transmission
- UK CfD; Germany EEG relief; EU electrolyzer incentives
- Norway, Sweden, Switzerland: \$200/t carbon tax

Japan (Korea & SE Asia)

- Net-zero energy policy (2050) and zero-C fuel support (e.g., ammonia in coal a d gas power)
- Industrial policy for zero-C hydrogen (ships, manufacturing)
- Many bilateral agreements and strong innovation agenda (piloting, demos, early stage full chain)

Others

- Australia: Hub investments; Tech investment roadmap (prioritizes low-C H2 (blue and CCS)
- Canada: Hydrogen Roadmap; \$170/t carbon tax; trunk infrastructure
- Chile: Hydrogen bigger than copper by 2030 (10% of GDP)
- Gulf states: Aggressive demo and infrastructure schedule, blue & green

Recommendations: Now to 2030 for Circular C Economy

Start with "color blind" planning and analysis

- Assess existing infrastructure in detail; estimate upgrade costs
- Engage local communities now
- Many bilateral agreements

Build infrastructure ("aqua" culture)

- Green (transmission & electrolyzers) and Blue (CO₂ pipelines & dedicated storage)
- Focus on ports (application production, shipping, transportation)

Provide incentives (carbon focus)

- Production side: tax credits, grants, revenue enhancements (CfD; feed-in tariffs)
- Use side: Engine swaps & subsidies; manufacturing support;

Multinational & bilateral politics

- International LCA standards; IMO; C accounting frameworks
- Move from bi-lateral to sectoral (2030) to commodity (2040)

Thank You

https://circularcarboneconomy.co/resources/

COLUMBIA | SIPA Center on Global Energy Policy