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The need for CO, recycling

* We rely on many products that are carbon-intensive to produce but have limited
alternatives

- Aviation fuels, concrete, plastics, etc.

« 30% of global CO, emissions are in ‘hard to abate’ sectors
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CO, recycling — converting CO, into valuable products
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An unrealized opportunity...so far

« Chemical processes that consume CO, instead of generating it
» Reduces emissions of production

* Products have economic value in existing markets

« CO, recycling has remained difficult to deploy

* Need well-informed policy support
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We modeled 19 CO, recycling pathways to provide a better
understanding of the current state of CO, recycling,
opportunities, and challenges to reach global scale.
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Eight electrochemical pathways
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Eleven thermochemical pathways
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Analysis design

« Pathways consume low-carbon inputs

- Renewable electricity and chemical feedstocks that are made electrochemically with
renewable power

« Pathways scaled to supply current global demand for their product
* Globally representative cost estimates

« Market parity: cost of production equals selling price
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Key numerical assumptions

Parameter Value

Renewable electricity price $0.095/kWh

Green hydrogen feedstock price  $6.3/kg H-
CO, feedstock price $50/tCO,
Electrolyzer capital cost $1,000/kW

 Electricity price is globally representative and includes non-generation costs

» CO, feedstock is from point-source carbon capture

 Input prices may fall significantly over time and lower costs are available today in
limited contexts
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Costs of electrochemical pathways are high, and dominated
by electricity costs

Product
selling price

/

« But capital cost and fixed operation & maintenance alone are greater than selling price for many pathways
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Ratio of ECOP to selling price for electrochemical pathways
demonstrates distance from market parity

« Market parity:
Electrochemical
(Echem) CO production

« Water electrolysis ratio
is 2.5

e QOthers are below 7
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Costs of thermochemical pathways are slightly lower, and
main component is green hydrogen feedstock cost

* Non-hydrogen costs exceed selling price for many pathways
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Ratio of ECOP to selling price for thermochemical pathways
is lower, but far exceeds market parity

» Market parity: Ethanol
from lignocellulosic
biomass and the
concrete production
pathways

« QOthers have ratio

below 6
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Sensitivity analysis shows key cost drivers

Percent change in ECOP as a result of a 20% change in an input value
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Electrochemical pathways

Key cost drivers:

» Selectivity (ability to avoid
unwanted side reactions)

« Electrical energy efficiency

» Electricity price
- Slower to improve

Weaker cost drivers:
» Capacity factor
« Electrolyzer capital cost

 CO, feedstock price

- DAC would have small effect
on ECOP
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Thermochemical pathways

Key cost drivers:
» Selectivity
» Electricity price

 Hydrogen price

Weaker cost drivers:
» Capacity factor
» Capital cost

 CO, feedstock price
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Pathways have a combined carbon abatement potential
of 6.8 GtCO,/yr

Contingent on use of low-carbon electricity and feedstocks

« Carbon abatement is emissions reduction of displacing conventional production with CO, recycling
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Cumulative abatement potential available at market parity as
a function of effective carbon price

Methane
/" (thermochemical)

Light olefins (CO, hydrogenation)

Urea

/1.6 GtCO,/yr ____ Green hydrogen
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Pathways have massive global consumption of electricity
and feedstocks

« Pathways consume a combined 36,700 TWh/yr of low-carbon
electricity at global scale

- Current global electricity consumption: ~26,000 TWh/yr

* Most thermochemical pathways consume ~80 MtH,/yr each as
feedstock low-carbon hydrogen

- IEA NZE in 2030: 140 MtH,/yr global low-carbon hydrogen supply

« Pathways consume a combined 5.3 GtCO,/yr as feedstock CO,

- Currently ~0.2 GtCO,/yr consumed globally in CO, recycling
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Trillions of dollars of capital investment in global critical
infrastructure needed

» Majority renewable electricity capacity (8,400 GW total)
« CO, transport capital costs comparatively negligible
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Key findings

« Costs of CO, recycling are high and dominated by input costs (electricity and feedstocks)
« Pathways can be classified by ratio of ECOP to selling price

« Main cost drivers are catalyst selectivity, catalyst energy efficiency, and prices of inputs

« Pathways have a combined carbon abatement potential of 6.8 GtCO,/yr

« High effective carbon price consistent with market parity

« Trillions of dollars of critical infrastructure needed per pathway, mainly renewables and
electrolyzers
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Ensure CO, recycling pathways consume low-carbon inputs

High carbon abatement can only be achieved using low-carbon
electricity and low-carbon H,, syngas, and/or ammonia
feedstocks.

« Can use CO, from direct air capture or biomass
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Prioritize pathways strategically

For market scale: (market parity)

» Electrochemical CO production
« Ethanol from lignocellulosic biomass
» Precast concrete carbonation curing

» CarbonCure concrete process
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For early market entry: (ECOP to selling price ratio < 5)
» Green hydrogen

» CO, hydrogenation to light olefins, methanol, and jet
fuel

» CO, recycling urea production

For further technological innovation: (ratio < 8)

» All pathways (incl. Echem CO, reduction, F-T synthesis,
RWGS)

Deprioritize: (ratio > 25)
» Electrochemical methane and ethane production

» Sabatier process methane production
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Use RD&D agenda focused on catalyst innovation to bring
down costs

Improving the activity and selectivity of catalysts will reduce
electricity/feedstock costs and alleviate demand on critical
infrastructure.

Catalyst performance is an lever
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Create demand pull for early market CO, recycling products

Demand pull policies can create early markets for CO, recycling and help
achieve scale.

* Public procurement, financial incentives, milestone payments
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Promote buildout of critical infrastructure

Accelerated buildout of low-carbon electricity, transmission, electrolyzers,
and CO, transport infrastructure is needed to enable CO, recycling at scale.

 Remove barriers to infrastructure projects and provide/enable investment
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Our findings can provide granularity for American Jobs Plan

Initial plan included $35 billion in climate innovation and public
procurement of cleaner cement.

« Use findings to guide CO, recycling innovation funding and define public procurement
standards
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Include demonstration of market-ready CO, recycling
pathways in American Jobs Plan

Initial plan included $15 billion in climate demonstration (CO, recycling not listed)
+ 15 low-carbon hydrogen demonstration and 10 carbon capture retrofits

Include the following CO, recycling pathways:
 Electrochemical CO production

« CO, hydrogenation to light olefins, methanol, and jet fuel
* CO, recycling urea production
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Thank You
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Intensive CO, abatement of electrochemical pathways
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Intensive CO, abatement of thermochemical pathways
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Marginal abatement cost and revenues for electrochemical
pathways
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Marginal abatement cost and revenues for thermochemical
pathways
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Hundreds of billions of dollars in gross global subsidies
needed to close cost-price gap
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Global renewables and electrolyzer capacity for
electrochemical pathways
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Global renewables and electrolyzer capacity for
thermochemical pathways
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Global electricity consumption of electrochemical pathways
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Global electricity consumption of thermochemical pathways
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Global hydrogen consumption of thermochemical pathways
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