Low-Carbon Steel Production: Options and Assessment

COLUMBIA | SIPA

Center on Global Energy Policy

Zhiyuan Fan, Dr. Julio Friedmann March 2nd, 2021

Agenda

1. Today's Iron and Steel Production

- BF-BOF dominates 71%
- EAF-scrap 24%, DRI-EAF 5%

2. Decarbonization Approaches

 Hydrogen, Biomass, Zero-Carbon Electricity, CCS

3. Potentials and Costs Summary

- Moving towards net-zero
- \$/ton-HM v.s. \$/ton-CO2

4. Findings and Suggestions

- · Pathways and approaches
- Policy Implications

5. Future Work

Longer term and more options

Iron and Steel: Massive global industry Globally traded, small margin commodity

Iron and Steel: 6% of global CO₂-eq emissions (same as cars)

In 2018: 1807 Mt/yr hot metal (HM)

1.85 ton-CO2/ton-HM \$400/ton-HM

→ 3.34 Gt-CO2/yr Source: Worldsteel Association

2018 Global Steel Production by Pathways (Mt/yr)

Source: Worldsteel Association

Iron and Steel Production Pathways: Blast Furnace + Basic Oxygen Furnace

www.energypolicy.columbia.edu | f y o @ColumbiaUenergy

Iron and Steel Production Pathways: Electric Arc Furnace & Direct Reduction Iron

Technology Options to Decarbonize Iron & Steel

- Not many options
- All have challenges

 Potential to decarbonize limited

1. Zero-C Hydrogen injection

- Blue (with CCS) & Green (electrolysis) options
- Fuel injection into furnaces or DRI unit

2. Biomass substitution

- Charcoal, "biocoke", biogas (not assessed)
- Life-cycle (LCA) and land use change (LUC) terms dominate

3. Zero-carbon electricity replacement

- No retrofit existing plants on reactors
- Mostly focused on EAF and DRI

4. CCS

- Retrofits to existing plants with conventional tech
- Mostly focused on top-gas capture

5. Combination options

- Only way to get deep decarbonization
- Only one way to make net-negative emissions steel

Hydrogen Injection: ~20% limit for BF-BOF

Biomass Substitution with Charcoal: Moderate potential; highly sensitive to LUC

Zero-Carbon Electricity Penetration

Replacing BF with DRI for Electrification and Deep Decarbonization

Iron/steel production pathways and share (%)	Current Baseline	Medium DRI Replacement	High DRI Replacement
BF-BOF	71%	51%	26%
EAF-scrap	24%	24%	24%
DRI-EAF	5%	25%	50%
Weighted average CO2 intensity (kg-CO2/ton-HM)	1857	1713	1534
Electricity related CO2 emission (kg-CO2/ton-HM)	246	328	430
Non-Elec CO2 intensity (kg-CO2/ton-HM)	1611	1385	1104
Added electricity demand (TWh/yr) & capacity (GW)	N/A	449.7 TWh 146.7 GW (35% capacity factor)	1011.9 TWh 330.0 GW (35% capacity factor)

Electricity emission higher

Significant zero-carbon electricity supply required.

Finding 1:

For deep iron/steel decarbonization we need all commercial options in combination

Decarbonization potential for different approaches

BF-BOF faces deep technical challenges.

- 1. BF-BOF has high carbon intensity
- 2 Decarbonization approaches for **BF-BOF** are limited.

Deep decarbonization potential better for EAF-Scrap & DRI+EAF systems

Suggests replacement agenda

Finding 3: enormous range of costs by option

- 1. Lowest cost options (\$/ton CO₂): CCS and Zero-C electricity
- 2. Green H₂ and non-ideal biomass are very expensive

Finding 4: Almost all options result in substantial production cost increases

Policy implications: Hard but important

US Policy

- High abatement costs limit conventional policy value
 - Broad infrastructure (zero-c power & CO2 pipeline) gets <50%
 - Insensitive to most carbon price policy proposals
 - Border tariffs must be very high

Must consider an asset replacement policy strategy

- Potential policies to assist deployment & cost competitiveness
 - Replacement grants (GND?)
 - Govt. procurement
 - Incentives for early adopters

International Policy

- Most production not in US
 - Will require international standards
 - Will require sectoral participation from companies (including SOEs)
- Not clear what is best model to engage
 - Border tariffs (EU): Unlikely to deliver abatement
 - Proactive club of nations & companies
 - Sectoral effort parallel to Paris & G20
- Innovation agenda (possible Mission Innovation target)

Towards a Low-Carbon Future

Future for Iron/Steel

- Policies needed to assist deployment & cost competitiveness.
- Local decarbonization:
 - Design around local geography, economies, infrastructure, etc.
 - Engage local labor, communities, lawmakers, etc.
- Long-term future (>15 years) heavy on innovation agenda:
 - Overcoming technical challenges
 - MOE (electricity energy only)
 - HIsarna (<50% C-intense of BF)

Future for CaMRI Team

- Working on Iron/Steel
 - Specific geography cases (China, India)
 - More novel approaches (e.g., LanzaTech, new CCS)
 - More detailed analysis (e.g., ASPEN model)
- Component of broader on Industrial Decarbonization
 - Hydrogen production
 - Ammonia, Chemicals,
 - Cement & concrete
 - Etc.....

Thank You

