

The Collapse of Oil Prices – Implications and Risks

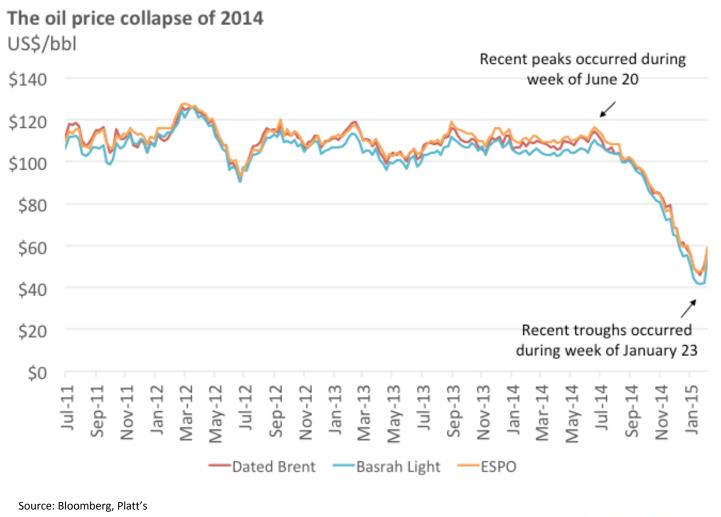
Colin P. Fenton

19 February 2015 Oslo Energy Forum

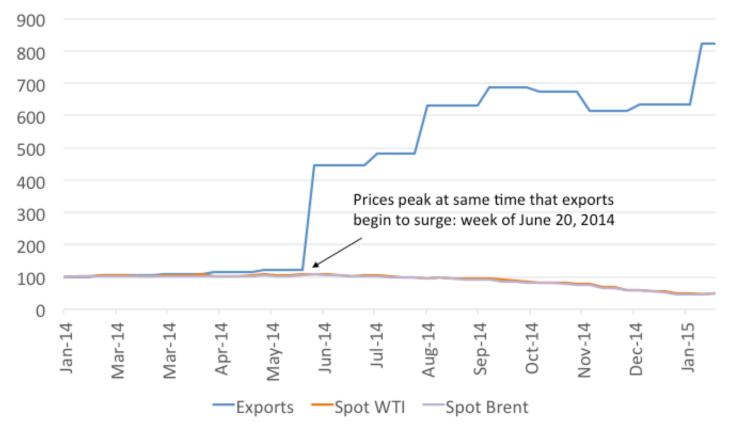
420 West 118th Street, New York NY, 10027 | @ColumbiaUEnergy | energypolicy.columbia.edu | energypolicy@columbia.edu

Objectives for this 15-minute brief:

Why did oil prices collapse in 2H2014?


Great Deflation or the Ascent of Risk?

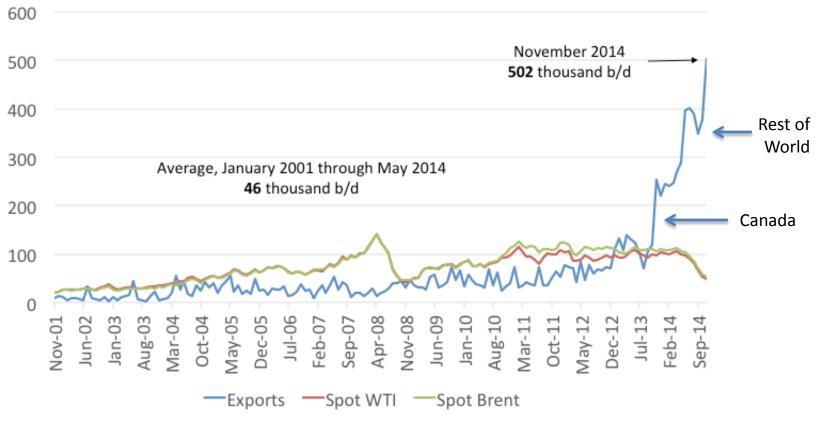
What are the implications and risks from here?



After years of range-bound motion, oil prices swooned by 60% in seven months. Why?

One of the most important factors is among the least recognized: a subtle liberalizing in US trade policy.

US crude exports surged after June 2014 Index = 100 at January 31, 2014


Source: Bloomberg, EIA, Platt's

🖸 Columbia | Sipa

Center on Global Energy Policy

US crude exports are now 10X larger than the normal activity of the past decade. A "wall" came down.

EIA's monthly data show the scale of the 2014 shift Exports in thousand b/d, price in US\$/bbl

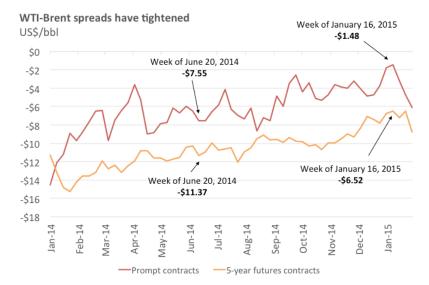
Source: Bloomberg, EIA

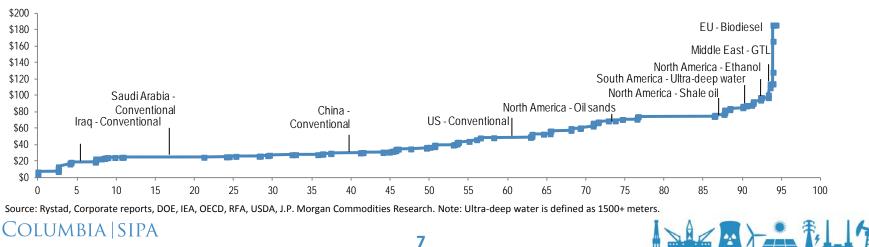
US data show no crude shipments to Japan in 2014. But Japanese import stats pick up 9,567 b/d in October.

	M.East							N.America	Africa					
	Iran	Iraq	Saudi Arabia	Norway				Russia				U.S.A.	Libya	
	Total	Total	Total	Alvheim	Vityaz	Sokol	RUSIA-Fo	M100R-Fo	Espo-B	Sakhal-B	Total	Proces-C	Total	Total
2013.12	814,675	453,631	6,201,363	72,963	208,651	225,036	-	-	904,985	-	1,338,672	-	-	19,082,598
2014.01	1,037,555	365,212	5,588,914	58,684	147,039	226,219	-	28,867	1,177,911	-	1,580,036	-	-	19,710,005
02	1,161,081	-	5,439,278	-	158,931	338,565	-	-	1,237,383	-	1,734,879	-	-	17,587,342
03	687,425	310,711	5,868,696	-	208,702	226,259	44,604	-	677,653	-	1,157,218	-	-	18,867,932
04	271,555	328,484	5,494,531	-	173,254	336,773	86,875	-	940,249	-	1,537,151	-	-	16,837,647
05	896,474	-	5,395,581	-	190,784	228,350	-	-	831,767	-	1,250,901	-	-	16,105,752
06	899,956	-	4,447,245	-	190,314	218,384	57,974	-	552,656	-	1,019,328	-	-	14,361,086
07	640,670	-	5,166,126	-	111,025	111,140	-	-	951,770	-	1,173,935	-	-	15,268,178
08	993,078	355,347	4,830,161	-	226,631	-	59,476	-	637,523	-	923,630	-	-	16,521,471
09	981,581	310,160	4,923,592	-	111,131	338,677	-	-	707,271	-	1,157,079	-	-	15,932,170
10	804,783	308,801	5,876,838	-	346,883	-	-	-	1,020,139	-	1,367,022	47,157	-	16,315,382
11	778,515	28,442	4,529,034	-	116,010	448,684	-	-	1,007,231	-	1,571,925	-	-	14,678,760
12	641,509	315,715	5,447,485	-	33,109	561,875	-		1,154,358	151,548	1,900,890	-	56,896	17,511,472
													ĺ	
Annual kbd	169	40	1,086		35	52	4	0	188	3	282			3,441
				11,905								9,567	11,543	
				b∕d in								b∕d in	b∕d in	
				Jan-14								Oct-14	Dec-14	

Source: MITI, Blacklight Research. Note = units in kl, except for annual sums in kbd, unless otherwise noted.

Columbia | SIPA


Center on Global Energy Policy


The US export outlet increases AB supply, displaces imports into Canada, and redraws the global cost curve.

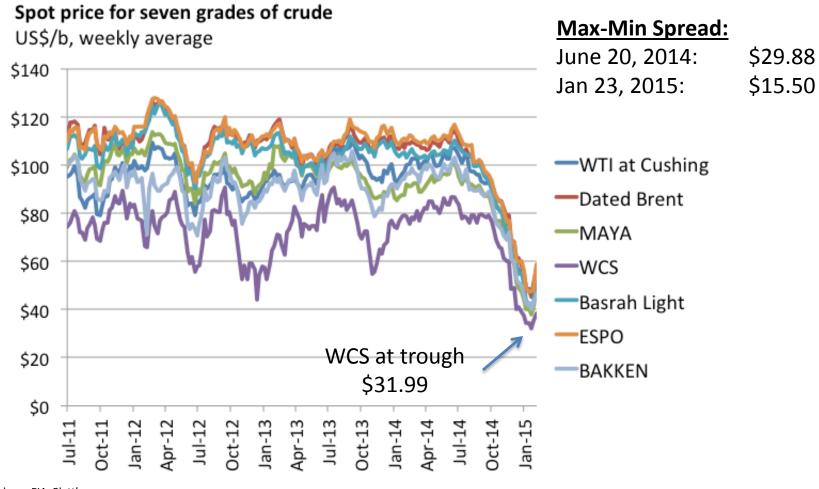
US rationale for shift in export policy

- Saturation: find new markets
- To lower US product prices
- Midterm elections, Congress
- Curb behavior of petro-states

1H2014 global petroleum supply curve (US\$ per barrel, y-axis; mbd, x-axis)

Center on Global Energy Policy

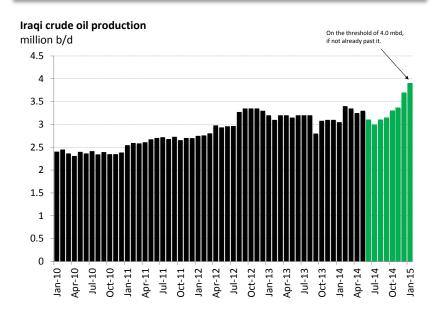
 $\overline{\mathbf{G}}$


The US export outlet allows international arbitrage and reduces pressure to clear through crude differentials.

WTI Cushing	- Dated Brent (\$/b)		WTI Cushing -	WTI Midland	(\$/b)	
	Average	Min	Max		Average	Min	Max
2000	1.89	0.45	4.35	2000	0.25	-0.19	0.50
2001	1.08	-1.14	5.15	2001	0.26	-0.03	0.43
2002	1.08	-1.18	2.56	2002	0.21	-0.11	0.48
2003	2.65	1.07	4.67	2003	0.26	-0.12	0.50
2004	3.51	2.47	5.01	2004	0.24	-0.10	0.80
2005	1.41	-1.37	3.70	2005	-0.01	-0.55	0.50
2006	0.07	-3.18	2.20	2006	-0.10	-0.55	0.25
2007	-0.34	-5.49	4.81	2007	-0.09	-0.40	0.30
2008	1.13	-10.13	4.94	2008	0.17	-0.65	2.00
2009	-0.73	-10.06	1.88	2009	0.20	-0.75	0.65
2010	-0.81	-5.57	2.07	2010	0.31	-0.40	0.90
2011	-16.11	-27.88	-7.14	2011	0.51	0.25	0.90
2012	-17.62	-23.33	-11.22	2012	4.01	0.60	14.75
2013	-10.65	-23.18	-0.02	2013	1.67	-0.65	13.00
2014	-6.64	-14.53	-2.57	2014	6.90	-0.50	18.00
2015 ytd	-3.50	-6.11	-1.48	2015 ytd	2.03	0.50	3.10

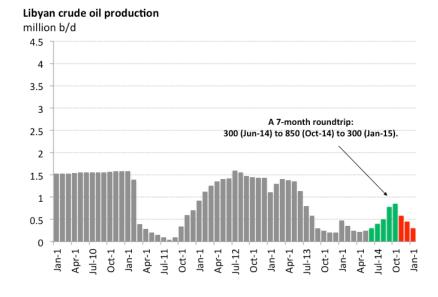
Source: Bloomberg, EIA, Platt's

Had USA not loosened trade restrictions, world grades would not have fallen as sharply. Instead, convergence.


Source: Bloomberg, EIA, Platt's

碰 Columbia | SIPA

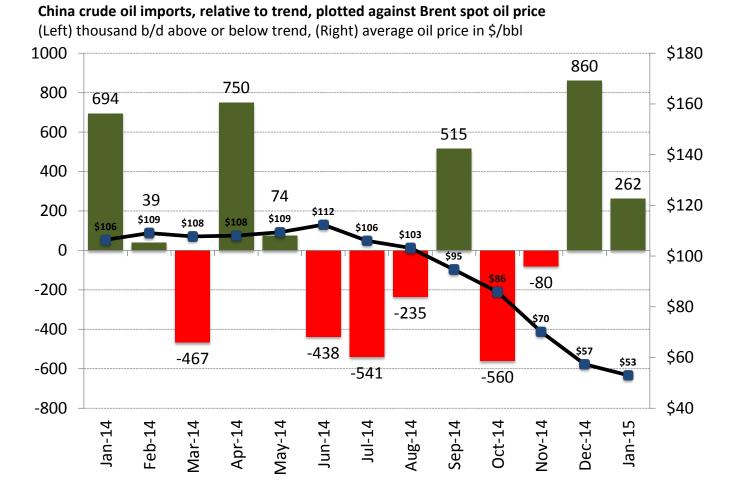
Center on Global Energy Policy


The non-US factors were also important. But 2014 was a tale of two kinds of supply shocks within OPEC.

Iraq: surprising success in face of IS

Source: OPEC

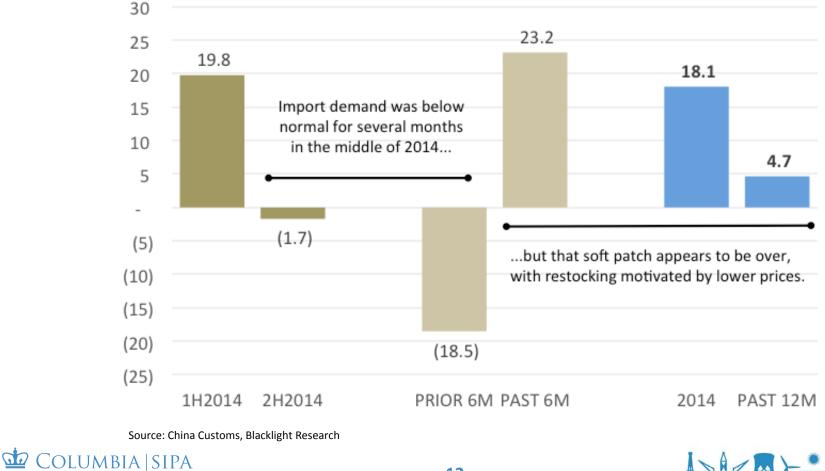
Libya: a surge of hope, then dashed



Source: OPEC

The path of China's crude imports reveals a competitive sensitivity to geostrategic risk, opportunity, and price

Source: China Customs, ICE, EIA, Blacklight Research


COLUMBIA | SIPA

 \mathbf{G}

Center on Global Energy Policy

The 2014 soft patch in Chinese import demand has come...and gone.

China's cumulative crude imports, relative to trend, by period million barrels above or below trend

Center on Global Energy Policy

Energy market risk is not static. The new year brings new challenges and extension of some old.

Supply

• Refinery strikes (product)

- Plummeting rig count
- Capex cuts: 25% 50%
- Layoffs: 7% 10%
- Administrative savings
- Egypt/Libya, "IS"
- Ukraine?

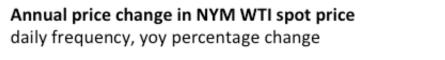
• Refinery strikes (crude)

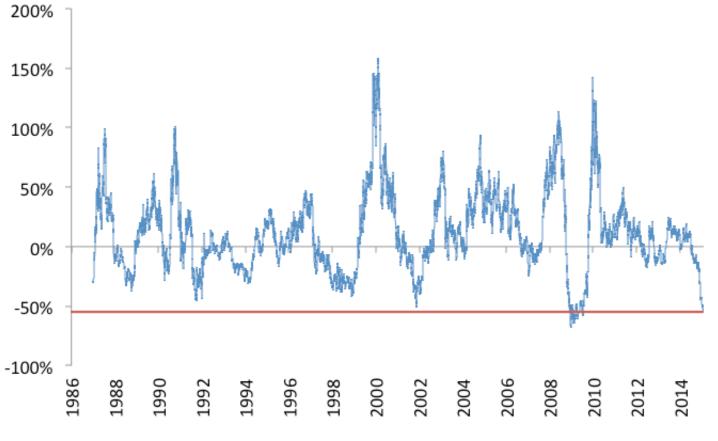
Demand

- European QE
- West Coast port strikes
- Greek Debt Crisis
- Extremes in US weather
- Cash and carry storage
- Ukraine?

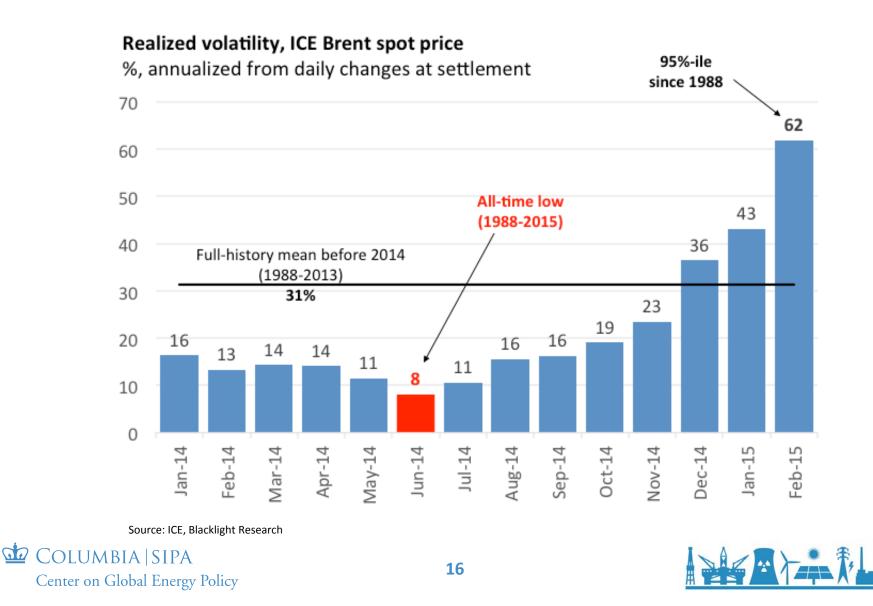
Where does this leave us?

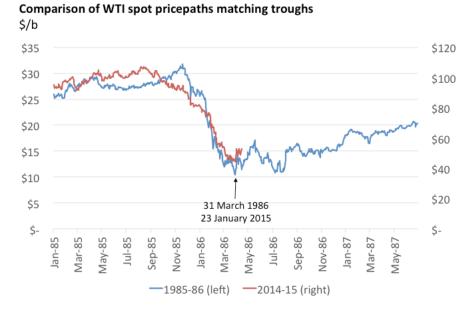
Why did oil prices collapse in 2H2014?


Great Deflation or the Ascent of Risk?


What are the implications and risks from here?

The recent price collapse is historically important and comparable in scope to 1986, 2008, 1998, & 1991. But...

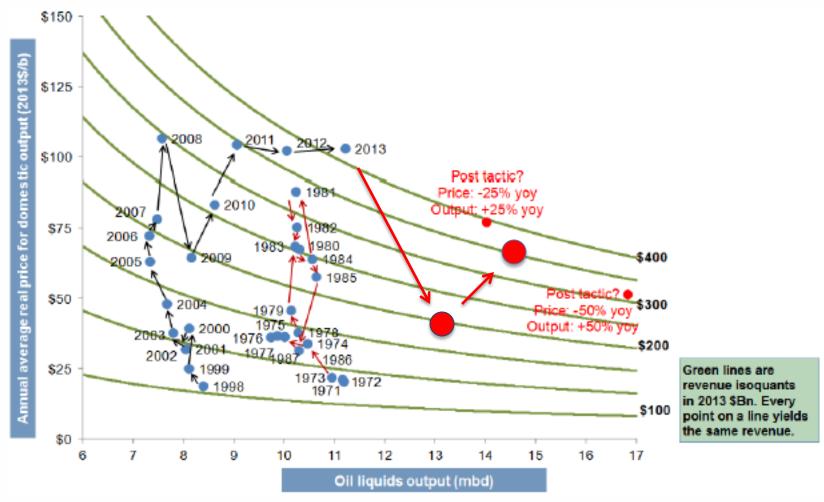



🖸 Columbia | Sipa

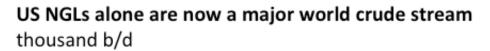
Center on Global Energy Policy

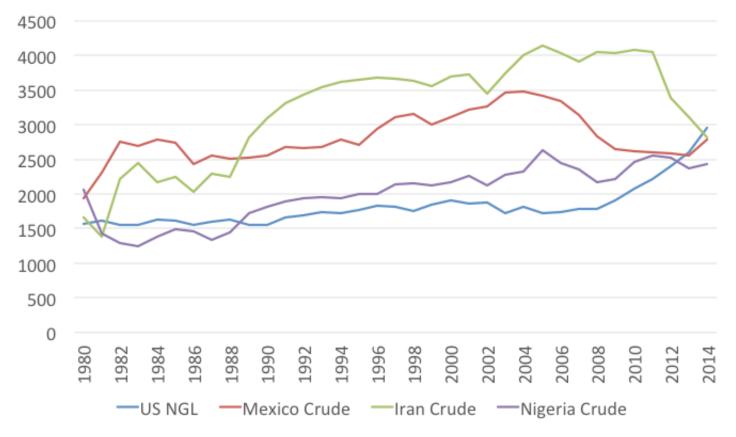
The Ascent of Risk: transit between tails feels extreme

Familiar terrain, though 1985-86 collapse was stronger (-67% v -59%) and steeper (131 days v 217 days)


Comparison of WTI spot pricepaths matching peaks

Source: EIA, NYM, Blacklight Research


US Isorevenue: US can trade price for market share



Source: Dermot Gately (NYU and Brookings, 1986), EIA, BPSR, BLS, J.P. Morgan Commodities Research

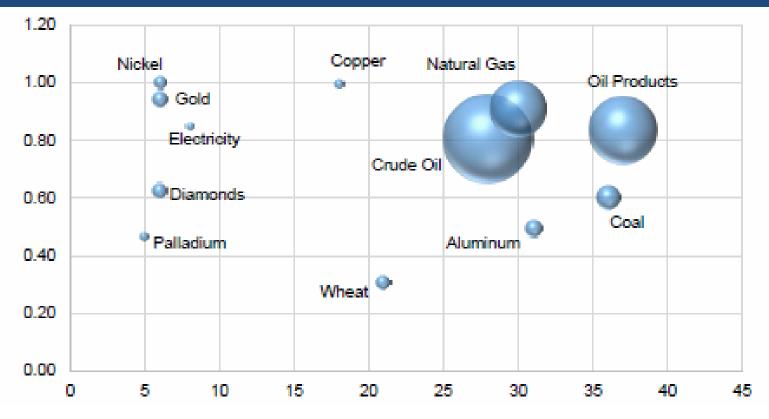
In 2014, US NGLs became larger than the total crude output of either Mexico, Iran, or Nigeria.

Source: BPSR, EIA, Blacklight Research

碰 Columbia | Sipa

Center on Global Energy Policy

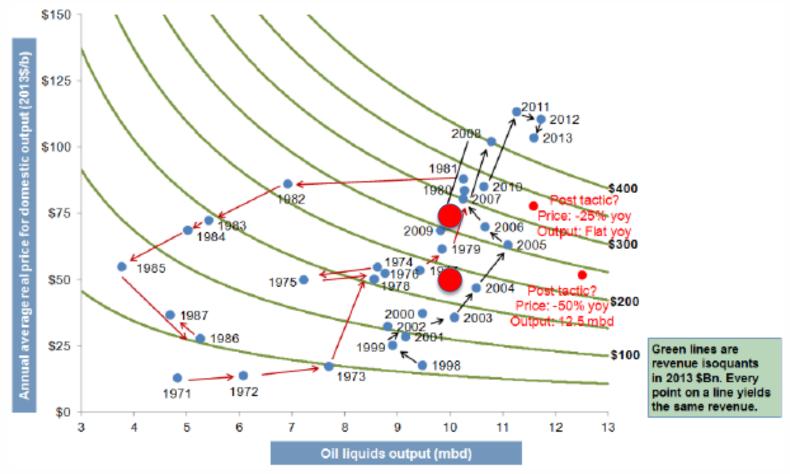
Russia Isorevenue: this is going to cost \$200Bn per year.



Source: Dermot Gately (NYU and Brookings, 1986), EIA, BPSR, Russian Central Bank, BLS, J.P. Morgan Commodities Research

Conversation in March 2014 focused on gas, not oil. But Russia relies heavily on oil sales to Europe for earnings.

The relative value of Russian exports to Europe, 2013 data (x-axis) number of European countries importing from Russia, (y-axis) Europe's share of total Russian exports. Note: bubble indicates relative size.


21

Source: Russia and European customs data, J.P. Morgan Research

COLUMBIA | SIPA

Center on Global Energy Policy

Saudi Arabia Isorevenue: can survive for long time on large reserves of dollars and low costs.

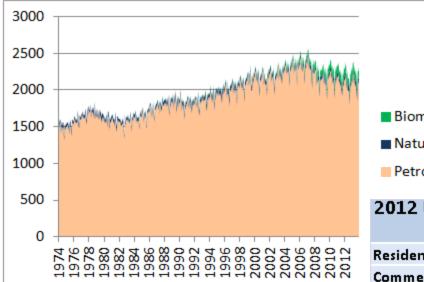
Source: Dermot Gately (NYU and Brookings, 1986), EIA, BPSR, BLS, J.P. Morgan Commodities Research

Implications and risks

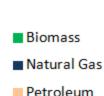
Why did oil prices collapse in 2H2014?

Great Deflation or the Ascent of Risk?

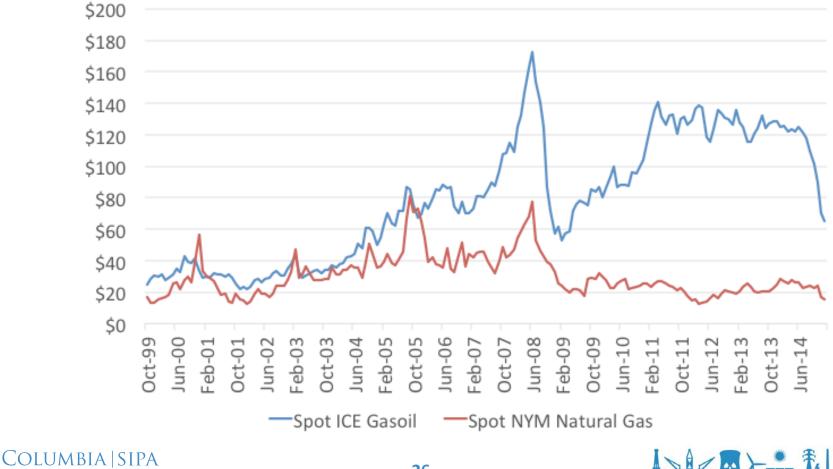
What are the implications and risks from here?


Before the plunge, Canadian oilsands were projected to account for 28% of global supply growth thru 2030.

	2012	2030P	Growth
Oilsands	1.8	5.2	3.4
	=>		
Total Canada	3.2	6.7	3.5
Oilsand share	56%	78%	97%



As lower price prompts huge cuts to capex, what is the new plan to fill this gap? LTO? NGV? Solar to liquids?


2012 US distillate consumption by end use

	million gallons	kbd	Percent Share
Residential	3473	400	6%
Commercial	2558	294	4%
Industrial	2326	268	4%
Oil Company	1711	197	3%
Farm	3032	349	5%
Electric Power	462	53	1%
Railroad	3118	359	5%
Vessel Bunkering	1768	203	3%
On-Highway	36343	4182	64%
Military	143	16	0%
Off-Highway	2088	240	4%
Total	57,022	6,561	

The diesel – natural gas spread, though narrowed, is still open and it is likely to widen again.

Gas price advantage has been reduced, not eliminated US\$ per barrel oil equivalent

Center on Global Energy Policy

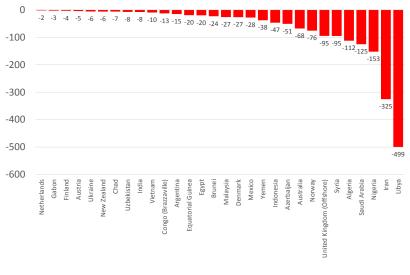
 $\mathbf{\overline{\mathbf{G}}}$

World liquids supply growth depends on US tight oil.

US growth > all others combined

thousand b/d. These top 30 growers = +2276 kbd. 1400 1200 1000 800 600 400 200 0 $e^{\text{pressolution}}_{137135} = 120$ $e^{\text{pressolutio$

Source: BP Statistical Review (2014), Blacklight Research


Liquids production growth by country, 2013

(2013) Number of countries who grew liquids production by > 200 kbd: **2**

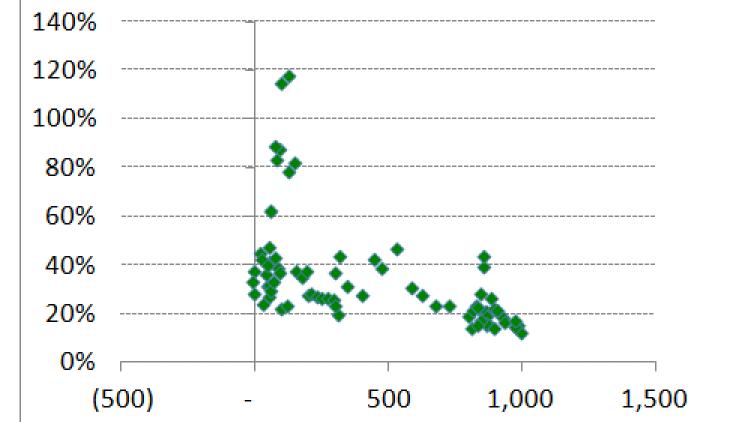
Oil output is falling in most countries

Liquids production growth by country, 2013

thousand b/d. These bottom 30 growers = -1918 kbd.

Source: BP Statistical Review (2014), Blacklight Research

(2013) Number of countries who lostliquids production by > 100 kbd: 5


Global petroleum balance tightened by 1.3 mbd from 2009 through 2013, despite +4.3 mbd US surplus.

	Liquids Output	Refinery Gains	Supply Growth	Demand Growth	Change in Balance
North America	4081	110	4192	-588	478
Canada	727	2	729	78	6:
Mexico	-275	-2	-276	-56	-2
USA	3629	109	3738	-611	43
Asia	288	110	398	4463	-40
China	389	34	423	2649	-22
India	82	25	107	645	-5
Indonesia	-123	0	-123	299	-4
Rest of Asia	-59	51	-9	870	-8
Eurasia	998	5	1003	532	4
Russia	729	8	737	414	3
Latin America	471	7	478	1033	-5
Middle East	1039	15	1053	1534	-4
Africa	-1253	3	-1250	433	-16
Europe	-1442	41	-1400	-1854	4
Oceania	-166	0	-166	77	-2
World	4016	291	4307	5629	-13

Source: EIA, IEA, Company Reports, BPSR, Blacklight Research

As US LTO production growth slows toward 500 kbd or less, volatility is more likely to be >30% than <25%.

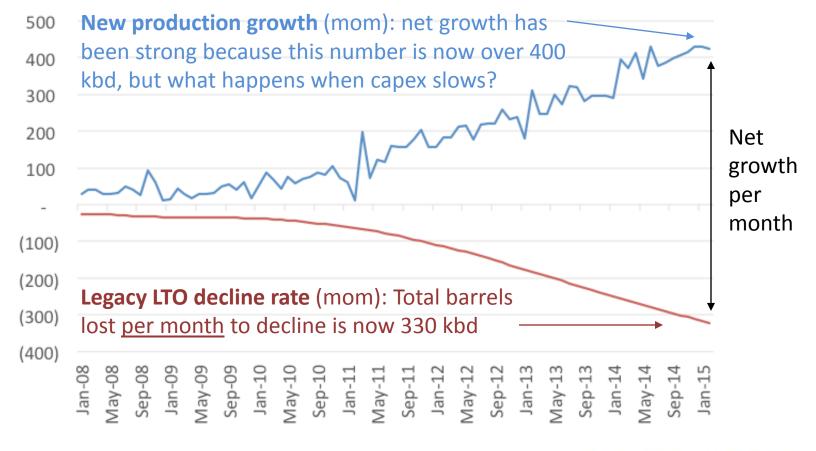
Year on Year Growth in Crude Production from 7 US tight oil basins (kbd)

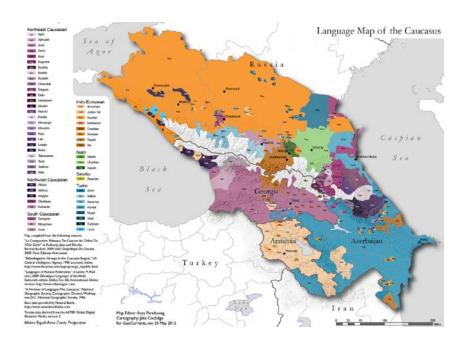
Source: EIA, NYM, Blacklight Research

Global manufacturing activity through early 2015 looks solid overall, with Europe the notable exception.

PMI (manufacturing) heat map: economic scale moves from below normal (deepest red) to above normal (deepest green)

Country											~ ~ ~ ~							್ ಎಂಕ್
country	Jul 10 Aug-8 Sep-0 Oct-60 Mov-8 Dec-0 Jan-8	Feb-0 Mar-0 May-8 May-8 May-8	Aug.1 Sep.0 Oct.10 Nov.0	Jan-1 Feb-1 Mar-1 Mar-1	1 das	Deci 1 Nov-1 Dec-1 Jan-1 Feb-1	Mar-1 Apr-1 May-1 Jun-1	Aug-1 Sep-1 Oct-11	Jan 1 Feb-1	Apr-1. May-1	Aug-1 Sep-1 Det-12	Nov-1 Dec-1 Lan-1 Feb-1	Mar-1 Apr-1. May-1	l-mul 1-ful	Sep-1 Det-1	Jan-1	Apr.1	Aun-14 Aug-14 Aug-14
Canada				4 101 111 101 101						4		NA NA 108 11	401 101 102	Q4	NO. (1981)-1818	114 ALT 125	CO 121 CO	
Mexico	19.4 AUX - 17.5 1855 - 19.4 - 19.4 AUX				51 142 810 181 812		417 417 411 511		an 417 332 10.0				-	41.8 520 522	51.1 ILL 120	525 MG. 118		44 mt mr.
United States	100 M2 M8 M4 M4 M M					107 225 478 MI 11-8	HI HI 07 HA		1 101 128 124 10	412 412 412 612	51 11 12 112	48.6 45.4 52.8 55	1 414 AT 8 500			MA ATA 422		23 mi mi
China		R.1	milden tat the	-	121 101 411 119 124		di di . 69.81 . 81.81 . 50.3		17 457 105 4F5 10	13 893 658 492		503 H± 443 -50	1 84 81 82	82 471 811	100 800 LCS	045 Hz 465	N10 -101 -01.0	HT 117 - 002
India	alle alle ava soo ere des ver		AND 141 144 445 44				ALP 484 AUA 484	ALA ALA 604 525 5			428 528 428 428		2 42.6 Mil - Stil	603 601 485		517 518 528		17.5 ALM - 12.4
Japan			108 M3 M3 513 10	8 121 128 127 128	A) 22.8 62.8 10.1 49.5	P2 405 412 214 528		E- 518 813 515 8	U 502 507 505 8	ALT 507 41		412 420 277 10	60+ 811 ELE	623 607 622	S.4 . 142 - 185	ML 388 152	as as as	518 80.5 82.2
Singapore	176 101 108 463 461 488 488	453 471 402 512 611 316	MAR 451 412 421 43	3 514 618 817 618	21 11 12 12 14 415	B.T. B.A. 627 405 423	601 \$28 60.8 52.4	03 404 403 401 4	ET 40.1 48.7 50.4 6	12 497 904 404	403 401 407 403	455 416 502 40	4 60 1 SI 111	817 4.8. 616	\$16 112 108	40) S.I. 109		50.5 HLK 40.7
South Korea	at the law an at the e-	#1 M1 02 80 00 (M)		* IA.6	Re 222 822 823 827 464	and this the same and	100 ALL 0.2 BA	en all and an a	11 (1414) (#13 (D2 (14	NO	and an an and	412 SI 201 IN	900 (BBA) (111	88, 817, 83	417 102 104	01.001.004	84 (612 (41)	44 401 000
Taiwan	1/1 B1 HC 10 11-11-11	## 500 001 516 CH 558	MI 01 11 211 2	C RATER OF THE	ER 104 105 102 100	ME 07 647 188 188	100 00 100 000	K) (112/112 00 1	1 41 44 27 3	1 012 10.6 482	ATE 16.1 MIE 47.4	an 606 116 10	2 612 (60 ¹¹ - 4A)	8.5 414 517	20 00 07	0.0 (CB 24.5	0.7 10.1 30.4	
Australia	ALL ALL ALL MAL THE REPORT	an all the set of the	(0.5 011 and (0.2) at	2 64 (814) 401 (84)	AT THE MA OF THE	ala an an (a) (a)	#10 ALL ALL BUE	ALC: NO. 10(1) 473 4	tal 102 106 001 14	a an in an	an las las cont	ALL ALL (1) (1)	ata	416 ATT 415	01.7 (AL2) 47.7.	40. (41) .44	10 Mil 102	40 80 40
Brazil	\$10 N.Y. 10.8. 462 144 1461 141			N MA	24 427 418 415 424		614 x7/004 (11	PA	17 471 000 the t		07 NO NO 002	102 SI 102 12	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	12.4 43.5 49.1	44.8 00.2 187	1.01 100 IL 100	ER: EM: 403	417 (0.1 (0.2
South Africa	47-01-41-487 (BE-107-DA		41 HE 40 1	6 911 BAT 124 127	05 STR 800 122 854	11.1 -127 St.4 -028 -512	407 414 04 NI	6.0 411 500 523 6	20 514 126 642 6	AL	918 - 818 - 8 12 - 8 10	197 ELL 103 EL	49.5 - 49.6 - 100.0	07 88 86	SE 0.7 - 524	495 - 445 - 117	546 ALA 60	-
Austria	471 AND COLD 1444 1419 1917 1917			• V.4 (84 (91) (83	NER MILLION MALE INC.	10. 162 AV 1000 000	100 MIL 104 101	929 (0.1 Jack case)		A 412 902 101	474 - 467 - 463 - VAUL	ar) ar) ari ar	1 411 478 407	401 (401) 800	NAL CASE MAX	NO CARL NO.	0.0 0.4 0.0	84 109 109
France	er ber inn best fin der er		0.0 011 MA 910 14	7 554 141 161 164	84 - 144 - 143 - 144 - 144	NO NO STO MA 447		05 441 462 495 1		T 184 187 185		411 415 -529 -83	ALC: 111 164	#LA 48.1 49.7	41 - 21 - 40.6	47.3 /44.1 =9.7	at 812-104	44
Germany			R2 44 440 D+ 12	7 107 172	R+ IR+ #12 IR- IN-			109 SSI 103 191 1	19 40 · 21.0 10.2 ···		- 10 11 11 10	41 MC 40 10	402 401 404	86 607 818	BLI 117 127	61 ml 144	19 11 10 TO	S2 E4 64
Netherlands	40 28 40 40 40 10 80 60		N.6 517 016 518 91	1 64 MI 177 MS			WI WY MS 471	1.4 NOT 401 405 4	n and and and a	16 401 JTR 457	411 Int 107 and	45.7 41.6 57.7 45		## 104 WY		-	117 514 511	82 88 87
Switzerland	27 mm ora ana 10 mm an	the second second second	Are the Ar	A GO HAI AND AND				27 111 AVE 411 A	Lt sor and and the	10 APR 014 AP			ANT ATS SHE	e4 = = =		an (11) (14)		MAR 44.9 42.5
United Kingdom	ALL AND DESCRIPTION OF ADDRESS	ne an ber ein die ne	1 112 115 114 115 11	r wa the first of a	11 10 10 10 10 10 10 10 10 10 10 10 10 1	ore are ave and her	AT 541 523 511	101 ATT 167 ATT 3	fil 401 inn 105 m	27 HI HT 411 -		ant 10.7 .11.0 at	60.0 mi 100	124 141 411	01.081.081		at will an	10 10 10 10 10 10 10 10 10 10 10 10 10 1
Greece	ste ste me an an in the	an 11 Mil 41 AV 41	1 1011 103 100 1412 10	o all this file the	to the set of set	en ai ai en ite	mi at 400 mm	ALL ADDRESS AND A	10 THE R	to lake the laws	10.000 000 0000	412 10 10 10 10	a na stat at	MEAT . 4722 . 487	0.5 10.2 10.2	01 012 0.2	63 83 83	21 E3 E3
Ireland	CONTRACT NO. DO TO	1 10 10 10 10 10 10 10	NO 411 <0 411 40	8 421 428 500 534	SKI 318 674 511 484	819 812 615 MI MT	657 550 518 458	62 07 83 001 3	15 491 463 497 5	15 501 112 501	ST	524 514 503 EV	6 61 411 97	903 910 920	507 BH 624	515 State 125	565 (66) 16 C	823 (824) - 828
Italy	85 61 88 W 95 98 91	- M. 101 77 101 47 101	147 478 457 101 H	0 812 (14 827, 543	NT NT NA ILE RA	BIC 529 547 (MI 1818	MD ME. 328. 411	10.1 x7.1 x4.3 x49.7 x	10 MT 400 475 0	10 (01 100 Act)	11 11 27 27	401 407 47A 46	44.1 (41.1 47.3	401 (01) (01)	92.6 (0.7 (R).A	60.3 55.1 42.2	EA .640 . 517	526 (1.9 414
Spain	and said out one way we want	1 77 12 12 12 12 12 12 12 12 12 12 12 12 12	ATT ALL ALL ALL ALL A	2 81 81 117 C3	NE HO BE UT ALL	112 100 114 CH 124	0.0 0.6 817 477	en are lattinet a	a di si si si	AN ANT ATT ANALY	REC ME ME ONLY	#17 ALL #1 #1	ALT CALL	101 AL 11	E7 E8 465	100 -122 -128	CIR 527 825	100 - 110 - 111
Euro Area	474 4/4 10.0 and 10.0 10.00	In on an ill as as	40.7 AT 10.7 51.7 18	A 30.8 38.7 36.0 178	NF 155 557 155 552	MA 967 317 313 518	MA ME MA NO	NA 212 MA 623 4	14 167 168 217 1	12 61 81 81	HI DI BI DI	ALC 163 175 17	4 46 (6.1 AL)	48.8 98.3 51.3	11.1 16.9 ME	N7 MR 532	110 114 197	11.0 11.0 10.0
Czech Republic			40 485 488 TO 1 10	6 811 343 818 -573	Pa da da UN Mai	07. STA NA (MA 111	MR 01 84 81	13.4 554 853 \$17 4	1 407 488 675 S	417 475 414	et at 20 42	412 412 45.1 41	ann 411 201	NR -51 11	574 S48 MA	92, 181 B.E.		647, M.S : 643
Hungary	W7 M9 415 418 101 184 101	01 01 00 111 01 01	4.0. 415 H.T. 427 21	100	199 . ann 1996 . 1999 . 1983 .	ITE AN ALL ALL AN	125	and they will deal a	ta ati ata 413 4	47 47 503 APR	110 010 024 010	121 41 - 14	1 ANN 11- 47.8	10.07 AND 10.0	ME MIL HER	sas wa ida -	117 Main 1988	477 mm 41.0
Poland	AL AL AT AL AL AL AL		ALC NO	a t-1 124 425 425	01 101 611 110 ML	11.4 16.9 10.2 16.6 10.0	040 518 620 510	14 ALL 102 819 1	18 498 622 071 0	1 843 MLH 844	0. 10 PH P3	AU 44 88 80	a and 144 min	45 01 04		112 MAR 18.10	00 C2 W1	000 MA #03
Russia			NE 105 HE 401 H	8 611 602 601 621	CE 60 10 10 10	BIA BLT ADE ADE MES	UES 52.1 60.7 57.4	10 10 10 10 10 1	28 818 30.6 617 0	18 63 62 NIT	01 110 03 03	102 50C 10A 10	2 KO. 101 101	67 82 81	101 101	ALL ALL ALL	413 ALL 413	4F1 ALD 81.0
Turkey	es an int at at at	54 00 5402 558 CD MI	474 131 528 3/A 40	6 193 100 343 168	MI MI2 AP3 113 403	943 No 864 RD 484	MI \$27 (04 \$3	23 AL 1/5 M3 6	23 521 107 411 4	66 622 902 614	AL 500 572 195	513 551 540 fb	\$ \$21 ML HI	92 01 80	SLE 113 165	\$11 \$27 10.4	0.2 ALL 10.1	88 .86 .03
Global			107 107 144 107 14	7 10.3 14.9 19.0 14.8						13 910 504 45.5		45.7 55.8 51.4 500			117 118 125	NO 110 133	1.5 50.2	NA 114 174


Source: Government and industry sources, J.P. Morgan Commodities and Economics Research



And US is dependent on an enormous decline rate lurking beneath its statistics: capital needs are huge.

Legacy decline rate across the top 7 tight oil basins is now >330 kbd per month

'Ukraine' and 'Xinjiang' both mean "frontier" or "edge". As in the Caucasus, ethnicity differs from "the center".

Source: University of Texas

What risk do ISIS-affiliated Uighurs pose to the security of oil facilities in Singapore or Shanghai?

Uighurs stepped up violent protests in Xinjiang in Spring 2014 when the world was watching China closely during a state visit by Putin. Are Uighurs really traveling to SE Asia? If yes, why?

The Straits Times www.straitstimes.com Published on Sep 16, 2014

Indonesia ISIS probe throws focus on Xinjiang link

Scores from China's province nabbed in South-east Asia in recent months

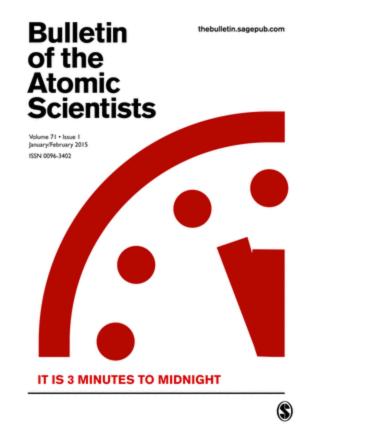
By Zakir Hussain & Kor Kian Beng

EVEN as Indonesian police continue to investigate four ethnic Uighurs arrested in Sulawesi over the weekend on suspicion of terror links, attention is being focused on the rising number of this group from China's restive Xinjiang province making their way to South-east Asia in recent months.

Scores of illegal immigrants from Xinjiang have been arrested in Thailand, Malaysia and Vietnam, and analysts say the trend is linked to rising violence in their home province over the past year.

Many of them arrive in the hope of seeking asylum in Turkey, a country that has been sympathetic to their plight given their ethnic and linguistic kinship, even though few have made it there.

"The vast majority do not support separatism or terrorism," Dr Rohan Gunaratna of Singapore's International Centre for Political Violence and Terrorism Research told The Straits Times.



May 2014: trial of 55 "extremists" in a soccer stadium in Xinjiang

Flashpoint: rhetoric about "loose nukes" has picked up

Jan 22: "3 Minutes to Midnight"

Factors to consider

- End of Nunn-Lugar
- Ukraine = no compromise
- Egypt has bombed Libya
- Terror in France/Denmark
- Japan loses a citizen to IS
- Cyber attacks

US Strategic Petroleum Reserve: From Defensive Cupboard to Offensive Policy Lever?

SPR as peaceful/lawful projection of US power through competitive markets

- Max rate of draw = 4.4 million b/d for 90 days = Russia
- Steady draw for:
 - 1 year = 1.89 million b/d = 1
 - 2 years = 946 thousand b/d
 - 3 years = 631 thousand b/d
 - 4 years = 473 thousand b/d
 - 5 years = 379 thousand b/d = A

- = Norway
- = Oman or UK
- = Argentina
- = Thailand
- = Australia

Conclusions: The Ascent of Risk

- New fundamentals, new trade rules, new walls
- Same markets, same economics
- Russia will likely lose market share: 500 to 2000 kbd by 2020
- Spot prices have likely bottomed
- Vol here to stay, but it's a return to normal.
- It is not possible to predict future prices.
- We can only frame and weigh risk scenarios, then manage.

Thank you

COLUMBIA | SIPA Center on Global Energy Policy For more information contact Colin P. Fenton

Fellow

Email Phone colin.fenton@columbia.edu 646-256-5062

